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ABSTRACT scores. However, this class of metrics is not suitable for me

) _ dia distribution scenarios, since the original data is ligua
This paper extends a no-reference PSNR algorithm, pre;navailable at the receiver.

viously derived by the authors, by incorporating a spatio-  thyg, in transmission environments, a quality measure-
temporal model of the human V|§ual system (HVS_)- Videoment system at the receiver should be able to provide qual-
errors due the H.264/AVC encoding process are firstly esyy feedback without requiring the reference signals. This
timated using the received DCT coefficients and the correpa jead to an increased research efforhonreferencéNR)
sponding quantization steps. In order to obtain a metric fohuality metrics €.g.[4]) and reduced referencéRR) quality

the visible video distortion, the estimated errors are thep,atrics €.9.[5]). NR metrics rely on the received signals
weighted using an HVS model based on the spatio-temporglyly while RR metrics use the received signals and a cer-

contrast sensitivity function derived by Kelly and Daly. &h ain amount of information about the reference signal (sent
video related inputs for the perceptual model are the mOt'O'Ehrough a side information channel).

vectors and the frame rate, which are also extracted from The method proposed in this paper belongs to the NR

the received encoded video. In order to validate the reSU|t%|uaIity metrics category. It computes the quality scores
a set of video sequences that span a wide range of contegit |y 264 encoded video sequences based on the quantized
have been encoded at different bitrates and their qualsy hgjiscrete cosine transforfDCT) coefficients, on their corre-
been subjectively assessed. Results show that the qualeaﬁlonding quantization steps and on the motion vectors fwhic
scores computed by the proposed metric are well correlatedy, g pe extracted from the received bitstream. Basiilly

with the mean opinion scores resulting from the subjectivg.qngists of a local error estimation procedure followed by a
assessment. perceptual weighting of the resulting estimates.
Index Terms— Video quality, no-reference metric, per-  Local error estimation is performed based on feak
ceptual model, H.264 signal to noise ratiqPSNR) estimation algorithm proposed
in [6], which relies on statistical properties of the bldo#sed
DCT coefficient data. In short, coefficient’s distributicere
1. INTRODUCTION modeled according to Cauchy or Laplapsbability den-
sity functions(PDFs). The parameters of those PDFs are
Quality assessment of multimedia data has become an impatoemputed based on the received quantized DCT coefficients,
tant matter, especially due to the increasing transmission using a maximum-likelihood parameter estimation method
video contents over the internet and mobile networks. combined with a linear prediction. This prediction scheme
The most reliable source for assessing the quality of mulexplores the correlation between PDF parameter values lo-
timedia are the human viewers since they are the consumersedted at neighbor DCT frequencies.
video communications products. However, gathering qualit  Error weighting is performed using a spatio-temporal per-
assessment data from the human viewers requires the complteptual model based on the work by Kelly and Daly. In [7],
tion of subjective quality testsvhich must be conducted un- Kelly devised an analytic model for the spatio-tempamh-
der controlled test conditions. Thus, subjective qualityres  trast sensitivity functiolfCSF), based on data collected from
cannot be used in real-time applications. his experiments. His work is extended by Daly in [8], by
An alternative is to score video quality usimfpjective  considering movements of the eye, namefgooth pursuijt
metrics Ideally, an objective metric should compute qual-natural drift andsaccadiceye movements.
ity scores matching the subjective ones. Most of the rekearc  In order to evaluate the results of the proposed metric,
performed on this field has been focused fah reference  subjective tests have been conducted in accordance with Rec
(FR) metrics (some examples in [1-3]), which require bothommendation ITU-T P.910 [9]. A set of representative video
the original and the distorted media to compute the qualitgequences have been encoded at different bit rates with the
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Fig. 1. Proposed quality assessment metric.

H.264/AVC standard. The resultinglean Opinion Scores obtain a global value of the distortion for the whole frame (o
(MOS) constitute the benchmark relatively to which the perfor a sequence of frames).

formance of the proposed algorithm is evaluated. Qualiy pr

dictions of the proposed algorithm have shown a good corz 2. Spatio-temporal CSF model

relation with the MOS values resulting from the subjective . _ -
quality assessment tests. It his known that the human visual system is more sensitive

This paper is organized as follows: sectidrdescribes 0 image contrast rather than the absolute luminance values

the architecture of the proposed no-reference qualitysasse Contrast can be defined as the ratio between the local lumi-
ment metric, emphasizing the perceptual model. SecBon Nhance variation and the average background luminaboe:
describes the methodology and conditions associated to suliast sensitivityis the inverse of the minimum contrast neces-
jective tests. Results are depicted in sectiand finally, the ~ Sary for an observer to detect a stimulus. A spatio-temporal

main conclusions and topics for further research are giwen iCSF describes the evolution of the HVS sensitivity to lumi-
sections. nance changes and it depends on the spatial and temporal

frequencies of the stimulus. Based on data collected from
his psychophysical experiments [7], Kelly proposed a spati
temporal CSF model as a function of the spatial frequefigy,
and the retinal velocity, g, which implicitly gives the tempo-

ral frequency. This function is given by:

The proposed architecture for assessing the quality of an

H.264 encoded video sequence is represented in figute CSRug, fs) = Scocav, (2mey )2 exp (_ 47T01f5)’ )
consists of two main steps: local error estimation and ferce Jmaz

tual weighting of those estimates. This type of architextur
allows to extend the use of perceptual models (based on errdf

weighting) to the no-reference quality assessment problem CoURN |3 n
(81 + S2 ‘log ( )‘ ) andfmam

2. QUALITY ASSESSMENT METRIC

2.1. General architecture

with the termsS and f,,,... defined as:

The error estimation module is based on the algorithm S =
proposed in [6], whose inputs are the quantized DCT coeffi-
cientsX;, and the corresponding quantization stgpsUsing  The constants;, s, andp; have been set t6.1, 7.3 and
these values, it computes an estimate for the squared @ror bi5.9, respectively [7]. The parameters, ¢; andc, allow
tween the original and quantized DCT coefficient valigs, model tunning and have been set to the same values as in [8]:
At this point, the algorithm is able to estimate the PSNR of¢, = 1.14, ¢; = 0.67 andc¢y = 1.7.
the received sequence, using squared error estimateadnste  The spatial frequency, can be computed as the euclidean

CQUR—FQ.

of their true values: norm of the subband spatial frequency components:
2552 2 2
PSNRest gy, = 1010810 T35 (1) fo=\/F2+F2. ©)
N 2ok=1°%k

In the K’ x K block-wise DCT domain, the componernfs
andf,. of the spatial subband frequency (in cycles per degree)
at location(i, j) of a DCT block are given by:

whereN is the number of DCT coefficients. Note that, in ac-
cordance with Parceval’s theorem, it is indifferent to meas
the PSNR in the pixel or in the DCT domain. The error esti-
mates are then perceptually weighted, using a spatio-teahpo ; j

model based on [7, 8]. The function of this model is to com- fy = 2Ka andf, = Ko (4)
pute local perceptual weighis. The inputs for the model are v ‘

the motion vectors)M 'V, and the video frame rat¢,., both  wherea, andc, the observation angle of a pixel along the
extracted from the encoded bitstream. The weight@and  horizontal and vertical directions, respectively. The tie
error estimates;, are then combined and pooled in order toservation angle of a pixel along a generic directipnan be




computed as: | Trial n Trial n+1
l¢ l¢ Ref. Test
Qg = arctan ~ 7 (5) o ?
2dN, ~ 2dN, TN
wherel, is the height/width of the images displayed on the Voting Voting
screeny is the distance from the observer to the screen and (a) Test session structure.
N, is the vertical/horizontal resolution of the displayedead

sequence.

The object velocity on the retina plane is strongly related
with the object velocity in the image plane. However, the hu-
man eye has the ability to track objects, slowing down the
velocity of the object in the retina plane. This characteris
is called thesmooth pursuit eye movem¢8PEM). Addition-
ally, there are other movements of the eye, namely#iaral (b) Impairment scale.
drift andsaccadiceye movements. The former is a slow eye ) ) )
movement that causes a little amount of motion in the retina ~ Fi9- 2. Degradation Category Rating Methodology.
plane, while the latter are fast eye movements cause by ehang
ing the gaze to new image plane locations. - andéy, is the local error estimate computed by the error es-

According to [8], the retinal image velocity can be com- timation block. Finally, the same pooling process is applie

puted as: along the time basis in order to get a global distortion roetri
VR = V] — VR, (6)  for the encoded video sequence:

[] 5. Imperceptible

|:| 4. Perceptible, but not annoying
[] 3. slightly annoying

[] 2. Annoying

[] 1. Very annoying

wherew; is the angular velocity of the object on the image

plane andvg is a compensation term associated to the eye D, = 412 Dfi4~ (10)

movements, computed as:

vEp = min{gs X v; + VpIN; VMAX ], (7)  Note that, for longer video sequences, a granularity pédod

computingD,, could be definedg.g, D, could be computed
Whel’egs is the SPEM gain, setto 0.924,;n andv 4 x are every 10 seconds of video).
the minimum and maximum velocities associated to the eye
natural drift and saccadic eye movements, sétt6 and80
degls, respectively. 3. SUBJECTIVE QUALITY ASSESSMENT

The angular velocity on the image plang, is given by:
9 y ge plang. 15 9 Y 3.1. Methodology

vr = fr \/(vaam)z + (MVyay)?, (8)  The subjective quality assessment tests have been pedorme
in accordance with Recommendation ITU-T P.910 [9]. The
whereM 'V, and MV, are the components of the motion vec- method followed in this work was thBegradation Category
tor along the horizontal and vertical directions, respetyi  Rating(DCR) [9] (which corresponds to tHouble Stimulus
and f, is the frame rate of the video sequence. The compotmpairment Scal€DSIS) method in [11]). In this methodol-
nents of the observation angle of a pixe}, anda,, are those  ogy, the observer is presented with video sequences oeghniz

resulting from 4). in pairs, as illustrated in figur2-a): the first to be displayed is
called thereferencesequence (usually, the original) while the
2.3. Quality scores second is called theestor impaired sequence (in our case,

_the result of lossy encoding); it has been used the five grade
Based on the result of the CSF computed at each locatiofpairment scale depicted in figugeb), that reflects the ob-
in the block-wise DCT domain, a global distortion value for server’s judgment about the impairment.

the whole video frame]);, is then computed using4 error

ooling according to [10]:
P 9 gto[10] 3.2. Assessment conditions

D= 4 Z (gkpk)‘l, (9)  According to [9], at least 15 observers are needed in order to
a produce reliable results. In our cage observers (mostly stu-
dents) participated in the subjective experiments. Thexewe

wherep, = CSHug,, fs,) is the result of the contrast sensi- screened for visual acuity and color blindness, using al&mel
tivity function computed at thé-th DCT coefficient location Eye Chart and Ishihara’s plates, respectively. The duraifo



Height of the picture shown in the screen 8cm Sequence Bit rates

Viewing distance 64 cm Coastguard 66, 131, 263 and 525 kbit/s
Background room illumination 13.45 Jux Container 66, 131, 262 and 524 kbit/s

Peak luminance of the LCD screen 95.8 lux Football 264, 526, 1051 and 2105 kbit/s
Luminance of inactive screen 2.23 lux Foreman 131, 263, 525 and 1051 kbit/s
Luminance of background behind the display  10.15 lux Mobile 131, 262, 525 and 1049 kbit/s

Ratio of inactive screen to peak luminance 0.023 Stephan 140, 263, 525 and 1050 kbit/s

Ratio of background to peak luminance 0.14 Table 66, 132, 263 and 525 kbit/s

Table 1. Environmental viewing conditions. Table 2. Bit rates of the sequences used in the tests.

each session was about 20 minutes with the room setup dtave a high value even if the sequence has a low temporal
lowing two observers to participate in each session. and/or spatial activity. In order to minimize this effedtet

As for the environmental viewing conditions, three fac-global activity values result from applying the 95% perdent
tors must be considered: the lighting, the ambiance noide arto the temporal and spatial activities series, instead iofgus
the quality and calibration of the display. Two high quality its maximum.
LCD displays of the same model with native resolutions of Figure 3 represents the video sequences used in the sub-
1650 x 1050 pixels have been used and they were previouslyective tests. They have been selected based on their spatio
calibrated. The display and room characteristics usedén thtemporal activities, whose values are depicted in fighire
subjective tests, listed in tablg are within the values recom- These sequences are CIF form3§) x 288), with a frame

mended in [9]. rate of 30 Hz. The sequences were encoded using the ref-
erence H.264 software tools [12]. For each sequence, four
3.3. Selection of test material different bit rates in the range frol2 to 2048 kbit/s have

) ) ) been used for encoding, resulting in the bitrates sumntrize
In order to avoid boring the observers and get meaningfuf, (aple2. GOP-15 structuré BB PBBP... has been used in

results, it is important that a small, but representatieé,08 5| encoding runs. Only thé x 4 transform size was allowed
video sequences is used during the tests. In particulaspdte 5 the low complexity rate-distortion optimization aligom

tial and temporal activities are important parameters Whic q\ided on the software has been used. The result is a set of
should be considered when choosing the test sequences encoded sequences (impaired sequences), whose qualities
Thus, it is important to choose a set of sequences that Spgfbre judged by the test participants. This set allows to test
a wide range of values for those activities. The literaturgne human visual system (HVS) perception to different kinds

provides several methods of measuring a video spatial ang \ijeo qualities and to indirectly force the observersse u
temporal activity. In this work, the methods recommended, grades of rating scale.

in [9] have been used:

 Spatial activity: the horizontal and vertical picture gra-
dient are computed using the well known Sobel filters.

The gradient norm (the square root of the sum of therne mean opinion scores (MOS) are computed at the end
vertical and horizontal gradient squares) is then compyf the session, based in the image quality assessmentsresult
puted for each pixel. The standard deviation of the gragiyen by all observers. In order to guarantee the coherence
dient norm is calculated for each frame, resulting in agnq the consistency of the results provided by the subgctiv
time series of frame-by-frame spatial activities. In or-tests, a statistical analysis (described in [11]-Annex&3 ap-

der to achieve a global value for the spatial activity, thepjied to the assessment results. For each test conditiors MO
maximum value in the time series is selected. values are computed by averaging the quality scores of the

» Temporal activity: the temporal activity measure is coherent obsgrvers, only. i
obtained by computing the difference, pixel-by-pixel, The resulting MOS values and the video sequences used

between each pair of successive frames. After this proi_n the subjective quality assessment tests are availalileeon
cedure has been carried out, the standard deviation &Y http://amalia.img.ix.it.pt/ " tgsb/H264_test/

the frames differences is computed . Similarly to what
happens in the spatial activity, the global temporal ac-
tivity value is computed as the maximum of these stan-
dard deviations.

3.4. MOS computation

4. RESULTS

The input video sequences used for evaluation of the prapose
Due to changes of the camera perspective during video acqujuality metric are the same used in the subjective quality as
sition or scene cuts, the global activity measurementsdcoulsessment tests, represented in figdire


http://amalia.img.lx.it.pt/~tgsb/H264_test/

Fig. 3. Video sequences selected for the subjective tests. Frbto kéght: Coastguard Container, Football, Foreman Mobile
& Calendar, StephanTable-tennis

50 Frame Type €avg Erms P
> 1 7@ Stephan 7 | 0.69 0.86 0.99
s : : P 0.83 1.09 0.98
5 ® Football ® Table .
8 0| & roeman "¢ @ Mobile B 089 1.13 0.98
g " ® Coastguard 7 All 0.86 1.10 0.98
£
P 1o . Table 3. PSNR estimation error statistics.
(® Container
0
e S};‘;ﬁa. ac;ffity e in [13], a logistic function was used in order to map thg

values into the MOS range used in the experiments:

Fig. 4. Spatio-temporal activities of the selected sequences. a1

Estimated MOS= a( + 1 guatasD,

11)

50

whereaq to a3 are the curve fitting parameters. These pa-
‘ g rameters have been computed in order to minimize the square
wl differences between the estimated MOS scores their true
MOS values and have been computed usingLtéenberg-
20 : : Marquardtmethod for non-linear least squares minimization
problems. The resulting logistic function is also plotted i
o 20 3 20 =0 figure 6-a). Figure6-b) shows the quality scores that result
Estimated PSNR (dB) from the proposed algorithm versus the MOS values obtained
in the subjective tests. As can be observed, the NR objective
Fig. 5. PSNR estimatess. their true values. quality scores resulting from the proposed algorithm ark we
L correlated with the subjective quality assessment data.
4.1. PSNR estimation In [13], VQEG suggests a set of statistical measurements
The PSNR has been estimated and compared with its triig order to benchmark the performance of an objective metric
value. Results are depicted in figuBe As can be observed These indicators can be observed in tablend confirm the
from the plots, the proposed method is quite accurate. Adthat the proposed NR quality metric performs well.
ditionally, table3 evaluates these results: the symbals,, When comparing these results with other results found
e.ms andp stand for the average error, the root mean squarén the literature, the proposed method seems to outperform
error and the correlation between true and estimated PSN@her algorithms designed for similar purposes. In [4],sRie
values, respectively. As can be observed from the table, tHet al. propose a no-reference video quality assessment met-
PSNR estimation method is quite accurate regardless of tHé Where the video contents are classified, and qualityescor

N
o

True PSNR (dB)

frame type. result from combining a set of motion features. The declared
performance in [4] is CC= 0.86, which is below the results
4.2. Quality scores of the method proposed in this paper.

In [5], Oelbaum and Diepold propose a reduced reference

The results for quality assessment have been evaluated byethod for H.264 encoded sequences where several features
comparing the quality scores retrieved by the algorithnihwit extracted from the video are combined (most of them are arti-
the ones that result from the subjective experiments desttri  fact measurements and motion oriented features), andthe re
in section3. sults are adjusted based on two parameter values sent khroug

Figure 6-a) depicts the the value of the propose percepa side channel. The declared performance of this method is
tual distortion metric given by equatiod@) versus the cor- CC = 0.84, RC= 0.80 and OR= 0.58, which are also below
responding MOS values. Following a procedure similar tathe results achieved by the algorithm proposed in this paper
what is suggest by théideo Quality Experts GroufVQEG) A standard for reduced reference quality assessment of
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Fig. 6. MOS estimation results.

Root mean square error (RMS) 0.383
Pearson correlation coefficient (CC) 0.953
Spearman rank order coefficient (RC) 0.946
Outliers ratio (OR) 0.071

Table 4. Evaluation of the proposed metric.

order to deal with transmission erroig(, packet losses) and
a more complete perceptual model could also improve the al-
gorithm'’s performance.

(1]

(2]

(3]

[4]

[5]

[6]

[7]

cable television signals is given in Recommendation ITU-T

J.246 [14]. This RR metric £Edge-PSNR- is based on edge

maps extracted from the original signals, which are sent to (8]
the receiver. The performance of this metric increases has

the side channel bandwidth increases.(as the number of

points in the sent edge map increases). The resulting values

for CC are in the range.81 —0.83. Again, our method shows

better performance. However, it must be kept in mind that the
method proposed in this paper is oriented to H.264 encodin{O0]

while the standardized method is not distortion specific.

5. CONCLUSIONS

(11]

A no-reference video quality assessment algorithm incorpo

rating some aspects of the human visual system has been pr[c}-2

posed. Although the H.264/AVC standard has been consid-
ered, the method could be straightly applied to other DCT-
based video encoding schemes. The algorithm comprises &3l

error estimation module followed by an error weighting mod-

ule based on a spatio-temporal CSF model. The resulting
MOS estimates correlate well with the human perception of14]

quality and show better results than other algorithms famd
literature.

As for future work, the algorithm should be extended in

] Heinrich-Hertz-Institut,
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