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ABSTRACT

This paper extends a no-reference PSNR algorithm, pre-
viously derived by the authors, by incorporating a spatio-
temporal model of the human visual system (HVS). Video
errors due the H.264/AVC encoding process are firstly es-
timated using the received DCT coefficients and the corre-
sponding quantization steps. In order to obtain a metric for
the visible video distortion, the estimated errors are then
weighted using an HVS model based on the spatio-temporal
contrast sensitivity function derived by Kelly and Daly. The
video related inputs for the perceptual model are the motion
vectors and the frame rate, which are also extracted from
the received encoded video. In order to validate the results,
a set of video sequences that span a wide range of content
have been encoded at different bitrates and their quality has
been subjectively assessed. Results show that the quality
scores computed by the proposed metric are well correlated
with the mean opinion scores resulting from the subjective
assessment.

Index Terms— Video quality, no-reference metric, per-
ceptual model, H.264

1. INTRODUCTION

Quality assessment of multimedia data has become an impor-
tant matter, especially due to the increasing transmissionof
video contents over the internet and mobile networks.

The most reliable source for assessing the quality of mul-
timedia are the human viewers since they are the consumers of
video communications products. However, gathering quality
assessment data from the human viewers requires the comple-
tion of subjective quality tests, which must be conducted un-
der controlled test conditions. Thus, subjective quality scores
cannot be used in real-time applications.

An alternative is to score video quality usingobjective
metrics. Ideally, an objective metric should compute qual-
ity scores matching the subjective ones. Most of the research
performed on this field has been focused onfull reference
(FR) metrics (some examples in [1–3]), which require both
the original and the distorted media to compute the quality

scores. However, this class of metrics is not suitable for me-
dia distribution scenarios, since the original data is usually
unavailable at the receiver.

Thus, in transmission environments, a quality measure-
ment system at the receiver should be able to provide qual-
ity feedback without requiring the reference signals. This
had lead to an increased research effort onno-reference(NR)
quality metrics (e.g.[4]) and reduced reference(RR) quality
metrics (e.g. [5]). NR metrics rely on the received signals
only, while RR metrics use the received signals and a cer-
tain amount of information about the reference signal (sent
through a side information channel).

The method proposed in this paper belongs to the NR
quality metrics category. It computes the quality scores
of H.264 encoded video sequences based on the quantized
discrete cosine transform(DCT) coefficients, on their corre-
sponding quantization steps and on the motion vectors, which
can all be extracted from the received bitstream. Basically, it
consists of a local error estimation procedure followed by a
perceptual weighting of the resulting estimates.

Local error estimation is performed based on thepeak
signal to noise ratio(PSNR) estimation algorithm proposed
in [6], which relies on statistical properties of the block-based
DCT coefficient data. In short, coefficient’s distributionsare
modeled according to Cauchy or Laplaceprobability den-
sity functions(PDFs). The parameters of those PDFs are
computed based on the received quantized DCT coefficients,
using a maximum-likelihood parameter estimation method
combined with a linear prediction. This prediction scheme
explores the correlation between PDF parameter values lo-
cated at neighbor DCT frequencies.

Error weighting is performed using a spatio-temporal per-
ceptual model based on the work by Kelly and Daly. In [7],
Kelly devised an analytic model for the spatio-temporalcon-
trast sensitivity function(CSF), based on data collected from
his experiments. His work is extended by Daly in [8], by
considering movements of the eye, namelysmooth pursuit,
natural drift andsaccadiceye movements.

In order to evaluate the results of the proposed metric,
subjective tests have been conducted in accordance with Rec-
ommendation ITU-T P.910 [9]. A set of representative video
sequences have been encoded at different bit rates with the
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Fig. 1. Proposed quality assessment metric.

H.264/AVC standard. The resultingMean Opinion Scores
(MOS) constitute the benchmark relatively to which the per-
formance of the proposed algorithm is evaluated. Quality pre-
dictions of the proposed algorithm have shown a good cor-
relation with the MOS values resulting from the subjective
quality assessment tests.

This paper is organized as follows: section2 describes
the architecture of the proposed no-reference quality assess-
ment metric, emphasizing the perceptual model. Section3
describes the methodology and conditions associated to sub-
jective tests. Results are depicted in section4 and finally, the
main conclusions and topics for further research are given in
section5.

2. QUALITY ASSESSMENT METRIC

2.1. General architecture

The proposed architecture for assessing the quality of an
H.264 encoded video sequence is represented in figure1. It
consists of two main steps: local error estimation and percep-
tual weighting of those estimates. This type of architecture
allows to extend the use of perceptual models (based on error
weighting) to the no-reference quality assessment problem.

The error estimation module is based on the algorithm
proposed in [6], whose inputs are the quantized DCT coeffi-
cientsXk and the corresponding quantization stepsqk. Using
these values, it computes an estimate for the squared error be-
tween the original and quantized DCT coefficient values,ε̂2

k.
At this point, the algorithm is able to estimate the PSNR of
the received sequence, using squared error estimates instead
of their true values:

PSNRest[dB]
= 10 log10

2552

1

N

∑N
k=1

ε̂2
k

, (1)

whereN is the number of DCT coefficients. Note that, in ac-
cordance with Parceval’s theorem, it is indifferent to measure
the PSNR in the pixel or in the DCT domain. The error esti-
mates are then perceptually weighted, using a spatio-temporal
model based on [7, 8]. The function of this model is to com-
pute local perceptual weightspk. The inputs for the model are
the motion vectors,MV , and the video frame rate,fr, both
extracted from the encoded bitstream. The weightspk and
error estimateŝεk are then combined and pooled in order to

obtain a global value of the distortion for the whole frame (or
for a sequence of frames).

2.2. Spatio-temporal CSF model

It his known that the human visual system is more sensitive
to image contrast rather than the absolute luminance values.
Contrast can be defined as the ratio between the local lumi-
nance variation and the average background luminance.Con-
trast sensitivityis the inverse of the minimum contrast neces-
sary for an observer to detect a stimulus. A spatio-temporal
CSF describes the evolution of the HVS sensitivity to lumi-
nance changes and it depends on the spatial and temporal
frequencies of the stimulus. Based on data collected from
his psychophysical experiments [7], Kelly proposed a spatio-
temporal CSF model as a function of the spatial frequency,fs,
and the retinal velocity,vR, which implicitly gives the tempo-
ral frequency. This function is given by:

CSF(vR, fs) = Sc0c2vr(2πc1fs)
2 exp

(

−
4πc1fs

fmax

)

, (2)

with the termsS andfmax defined as:
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The constantss1, s2 and p1 have been set to6.1, 7.3 and
45.9, respectively [7]. The parametersc0, c1 and c2 allow
model tunning and have been set to the same values as in [8]:
c0 = 1.14, c1 = 0.67 andc2 = 1.7.

The spatial frequencyfs can be computed as the euclidean
norm of the subband spatial frequency components:

fs =
√

f2
x + f2

y . (3)

In theK × K block-wise DCT domain, the componentsfy

andfx of the spatial subband frequency (in cycles per degree)
at location(i, j) of a DCT block are given by:

fy =
i

2Kαy

andfx =
j

2Kαx

, (4)

whereαx andαy the observation angle of a pixel along the
horizontal and vertical directions, respectively. The theob-
servation angle of a pixel along a generic directionφ can be



computed as:

αφ = arctan
lφ

2dNφ

≃
lφ

2dNφ

. (5)

wherelφ is the height/width of the images displayed on the
screen,d is the distance from the observer to the screen and
Nφ is the vertical/horizontal resolution of the displayed video
sequence.

The object velocity on the retina plane is strongly related
with the object velocity in the image plane. However, the hu-
man eye has the ability to track objects, slowing down the
velocity of the object in the retina plane. This characteristic
is called thesmooth pursuit eye movement(SPEM). Addition-
ally, there are other movements of the eye, namely thenatural
drift andsaccadiceye movements. The former is a slow eye
movement that causes a little amount of motion in the retina
plane, while the latter are fast eye movements cause by chang-
ing the gaze to new image plane locations.

According to [8], the retinal image velocity can be com-
puted as:

vR = vI − vE , (6)

wherevI is the angular velocity of the object on the image
plane andvE is a compensation term associated to the eye
movements, computed as:

vE = min{gS × vI + vMIN ; vMAX}, (7)

wheregS is the SPEM gain, set to 0.92;vMIN andvMAX are
the minimum and maximum velocities associated to the eye
natural drift and saccadic eye movements, set to0.15 and80
deg/s, respectively.

The angular velocity on the image plane,vI , is given by:

vI = fr

√

(MVxαx)2 + (MVyαy)2, (8)

whereMVx andMVy are the components of the motion vec-
tor along the horizontal and vertical directions, respectively,
andfr is the frame rate of the video sequence. The compo-
nents of the observation angle of a pixel,αx andαy, are those
resulting from (4).

2.3. Quality scores

Based on the result of the CSF computed at each location
in the block-wise DCT domain, a global distortion value for
the whole video frame,Df , is then computed usingL4 error
pooling according to [10]:

Df = 4

√

∑

k

(ε̂kpk)
4
, (9)

wherepk = CSF(vRk
, fsk

) is the result of the contrast sensi-
tivity function computed at thek-th DCT coefficient location
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Fig. 2. Degradation Category Rating Methodology.

and ε̂k is the local error estimate computed by the error es-
timation block. Finally, the same pooling process is applied
along the time basis in order to get a global distortion metric
for the encoded video sequence:

Dg = 4

√

∑

i

Dfi

4. (10)

Note that, for longer video sequences, a granularity periodfor
computingDg could be defined (e.g., Dg could be computed
every 10 seconds of video).

3. SUBJECTIVE QUALITY ASSESSMENT

3.1. Methodology

The subjective quality assessment tests have been performed
in accordance with Recommendation ITU-T P.910 [9]. The
method followed in this work was theDegradation Category
Rating(DCR) [9] (which corresponds to theDouble Stimulus
Impairment Scale(DSIS) method in [11]). In this methodol-
ogy, the observer is presented with video sequences organized
in pairs, as illustrated in figure2-a): the first to be displayed is
called thereferencesequence (usually, the original) while the
second is called thetest or impaired sequence (in our case,
the result of lossy encoding); it has been used the five grade
impairment scale depicted in figure2-b), that reflects the ob-
server´s judgment about the impairment.

3.2. Assessment conditions

According to [9], at least 15 observers are needed in order to
produce reliable results. In our case,22 observers (mostly stu-
dents) participated in the subjective experiments. They were
screened for visual acuity and color blindness, using a Snellen
Eye Chart and Ishihara’s plates, respectively. The duration of



Height of the picture shown in the screen 8 cm
Viewing distance 64 cm
Background room illumination 13.45 lux
Peak luminance of the LCD screen 95.8 lux
Luminance of inactive screen 2.23 lux
Luminance of background behind the display 10.15 lux
Ratio of inactive screen to peak luminance 0.023
Ratio of background to peak luminance 0.14

Table 1. Environmental viewing conditions.

each session was about 20 minutes with the room setup al-
lowing two observers to participate in each session.

As for the environmental viewing conditions, three fac-
tors must be considered: the lighting, the ambiance noise and
the quality and calibration of the display. Two high quality
LCD displays of the same model with native resolutions of
1650 × 1050 pixels have been used and they were previously
calibrated. The display and room characteristics used in the
subjective tests, listed in table1, are within the values recom-
mended in [9].

3.3. Selection of test material

In order to avoid boring the observers and get meaningful
results, it is important that a small, but representative, set of
video sequences is used during the tests. In particular, thespa-
tial and temporal activities are important parameters which
should be considered when choosing the test sequences.
Thus, it is important to choose a set of sequences that span
a wide range of values for those activities. The literature
provides several methods of measuring a video spatial and
temporal activity. In this work, the methods recommended
in [9] have been used:

• Spatial activity: the horizontal and vertical picture gra-
dient are computed using the well known Sobel filters.
The gradient norm (the square root of the sum of the
vertical and horizontal gradient squares) is then com-
puted for each pixel. The standard deviation of the gra-
dient norm is calculated for each frame, resulting in a
time series of frame-by-frame spatial activities. In or-
der to achieve a global value for the spatial activity, the
maximum value in the time series is selected.

• Temporal activity : the temporal activity measure is
obtained by computing the difference, pixel-by-pixel,
between each pair of successive frames. After this pro-
cedure has been carried out, the standard deviation of
the frames differences is computed . Similarly to what
happens in the spatial activity, the global temporal ac-
tivity value is computed as the maximum of these stan-
dard deviations.

Due to changes of the camera perspective during video acqui-
sition or scene cuts, the global activity measurements could

Sequence Bit rates
Coastguard 66, 131, 263 and 525 kbit/s
Container 66, 131, 262 and 524 kbit/s
Football 264, 526, 1051 and 2105 kbit/s
Foreman 131, 263, 525 and 1051 kbit/s
Mobile 131, 262, 525 and 1049 kbit/s
Stephan 140, 263, 525 and 1050 kbit/s
Table 66, 132, 263 and 525 kbit/s

Table 2. Bit rates of the sequences used in the tests.

have a high value even if the sequence has a low temporal
and/or spatial activity. In order to minimize this effect, the
global activity values result from applying the 95% percentile
to the temporal and spatial activities series, instead of using
its maximum.

Figure3 represents the video sequences used in the sub-
jective tests. They have been selected based on their spatio-
temporal activities, whose values are depicted in figure4.
These sequences are CIF format (352 × 288), with a frame
rate of30 Hz. The sequences were encoded using the ref-
erence H.264 software tools [12]. For each sequence, four
different bit rates in the range from32 to 2048 kbit/s have
been used for encoding, resulting in the bitrates summarized
in table2. GOP-15 structureIBBPBBP... has been used in
all encoding runs. Only the4 × 4 transform size was allowed
and the low complexity rate-distortion optimization algorithm
provided on the software has been used. The result is a set of
28 encoded sequences (impaired sequences), whose qualities
were judged by the test participants. This set allows to test
the human visual system (HVS) perception to different kinds
of video qualities and to indirectly force the observers to use
all grades of rating scale.

3.4. MOS computation

The mean opinion scores (MOS) are computed at the end
of the session, based in the image quality assessment results
given by all observers. In order to guarantee the coherence
and the consistency of the results provided by the subjective
tests, a statistical analysis (described in [11]-Annex 2) was ap-
plied to the assessment results. For each test condition, MOS
values are computed by averaging the quality scores of the
coherent observers, only.

The resulting MOS values and the video sequences used
in the subjective quality assessment tests are available online
at http://amalia.img.lx.it.pt/ ˜ tgsb/H264_test/ .

4. RESULTS

The input video sequences used for evaluation of the proposed
quality metric are the same used in the subjective quality as-
sessment tests, represented in figure3.

http://amalia.img.lx.it.pt/~tgsb/H264_test/


Fig. 3. Video sequences selected for the subjective tests. From left to right: Coastguard; Container; Football; Foreman; Mobile
& Calendar; Stephan; Table-tennis.
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4.1. PSNR estimation

The PSNR has been estimated and compared with its true
value. Results are depicted in figure5. As can be observed
from the plots, the proposed method is quite accurate. Ad-
ditionally, table3 evaluates these results: the symbolsεavg,
εrms andρ stand for the average error, the root mean square
error and the correlation between true and estimated PSNR
values, respectively. As can be observed from the table, the
PSNR estimation method is quite accurate regardless of the
frame type.

4.2. Quality scores

The results for quality assessment have been evaluated by
comparing the quality scores retrieved by the algorithm with
the ones that result from the subjective experiments described
in section3.

Figure6-a) depicts the the value of the propose percep-
tual distortion metric given by equation (10) versus the cor-
responding MOS values. Following a procedure similar to
what is suggest by theVideo Quality Experts Group(VQEG)

Frame Type εavg εrms ρ

I 0.69 0.86 0.99
P 0.83 1.09 0.98
B 0.89 1.13 0.98

All 0.86 1.10 0.98

Table 3. PSNR estimation error statistics.

in [13], a logistic function was used in order to map theDg

values into the MOS range used in the experiments:

Estimated MOS= a0 +
a1

1 + ea2+a3Dg
, (11)

wherea0 to a3 are the curve fitting parameters. These pa-
rameters have been computed in order to minimize the square
differences between the estimated MOS scores their true
MOS values and have been computed using theLevenberg-
Marquardtmethod for non-linear least squares minimization
problems. The resulting logistic function is also plotted in
figure 6-a). Figure6-b) shows the quality scores that result
from the proposed algorithm versus the MOS values obtained
in the subjective tests. As can be observed, the NR objective
quality scores resulting from the proposed algorithm are well
correlated with the subjective quality assessment data.

In [13], VQEG suggests a set of statistical measurements
in order to benchmark the performance of an objective metric.
These indicators can be observed in table4 and confirm the
that the proposed NR quality metric performs well.

When comparing these results with other results found
on the literature, the proposed method seems to outperform
other algorithms designed for similar purposes. In [4], Ries
et al. propose a no-reference video quality assessment met-
ric where the video contents are classified, and quality scores
result from combining a set of motion features. The declared
performance in [4] is CC= 0.86, which is below the results
of the method proposed in this paper.

In [5], Oelbaum and Diepold propose a reduced reference
method for H.264 encoded sequences where several features
extracted from the video are combined (most of them are arti-
fact measurements and motion oriented features), and the re-
sults are adjusted based on two parameter values sent through
a side channel. The declared performance of this method is
CC = 0.84, RC= 0.80 and OR= 0.58, which are also below
the results achieved by the algorithm proposed in this paper.

A standard for reduced reference quality assessment of
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Fig. 6. MOS estimation results.

Root mean square error (RMS) 0.383
Pearson correlation coefficient (CC) 0.953
Spearman rank order coefficient (RC) 0.946
Outliers ratio (OR) 0.071

Table 4. Evaluation of the proposed metric.

cable television signals is given in Recommendation ITU-T
J.246 [14]. This RR metric –Edge-PSNR– is based on edge
maps extracted from the original signals, which are sent to
the receiver. The performance of this metric increases has
the side channel bandwidth increases (i.e., as the number of
points in the sent edge map increases). The resulting values
for CC are in the range0.81−0.83. Again, our method shows
better performance. However, it must be kept in mind that the
method proposed in this paper is oriented to H.264 encoding
while the standardized method is not distortion specific.

5. CONCLUSIONS

A no-reference video quality assessment algorithm incorpo-
rating some aspects of the human visual system has been pro-
posed. Although the H.264/AVC standard has been consid-
ered, the method could be straightly applied to other DCT-
based video encoding schemes. The algorithm comprises an
error estimation module followed by an error weighting mod-
ule based on a spatio-temporal CSF model. The resulting
MOS estimates correlate well with the human perception of
quality and show better results than other algorithms foundon
literature.

As for future work, the algorithm should be extended in

order to deal with transmission errors (i.e., packet losses) and
a more complete perceptual model could also improve the al-
gorithm’s performance.

6. REFERENCES

[1] S. Winkler, “A perceptual distortion metric for digital color
video,” in proc. of SPIE, vol. 3644, S. Jose, USA, 1999.

[2] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment
based on structural distortion measurement,”Image Commu-
nication - Special issue on Objective Video Quality Metrics,
vol. 19, no. 2, pp. 121–132, February 2004.

[3] E. Ong, X. Yang, W. Lin, Z. Lu, and S. Yao, “Perceptual qual-
ity metric for compressed videos,” inproc. of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, vol. 2, Philadelphia, USA, March 2005.

[4] M. Ries, O. Nemethova, and M. Rupp, “Performance evalua-
tion of mobile video estimators,” inproc. of EUSIPCO - Euro-
pean Signal Processing Conference, Poznan, Poland, Septem-
ber 2007.

[5] T. Oelbaum and K. Diepold, “A reduced reference video qual-
ity metric for AVC/H.264,” inproc. of EUSIPCO - European
Signal Processing Conference, Poznan, Poland, September
2007.

[6] T. Brand̃ao and M. P. Queluz, “No-reference PSNR estimation
algorithm for H.264 encoded video sequences,” inproc. of EU-
SIPCO - European Signal Processing Conference, Lausanne,
Switzerland, August 2008.

[7] D. H. Kelly, “Motion and vision II: stabilized spatio-temporal
threshold surface,”Journal of the Optical Society of America,
vol. 69, no. 10, pp. 1340–1349, October 1979.

[8] S. Daly, “Engineering observations from spatiovelocity and
spatiotemporal visual models,” inVision model and applica-
tions to image and video processing, Ed. C. van den Bran-
den Lambrecht, Kluwer, 2001.

[9] ITU-T, “Recommendation P.910 – Subjective video quality as-
sessment methods for multimedia applications,” 1999.

[10] A. B. Watson, “DCT quantization matrices optimized for in-
dividual images,” inproc. of SPIE Human Vision, Visual Pro-
cessing, and Digital Display IV, S. Jose, USA, 1993.

[11] ITU-R, “Recommendation BT.500-11 – Methodology for the
subjective assessment of the quality of television pictures,”
1974–2002.

[12] Heinrich-Hertz-Institut, “JM 12.4 – H.264 refer-
ence software,” December 2007, available online at
http://iphome.hhi.de/suehring/tml/ .

[13] VQEG, “Final report from the video quality experts group on
the validation of objective models of video quality assessment,
phase II,”www.vqeg.org , Tech. Rep., August 2003.

[14] ITU-T, “Recommendation J.246 – Perceptual visual quality
measurement techniques for multimedia services over digital
cable television networks in the presence of a reduced ban-
width reference.” 2008.

http://iphome.hhi.de/suehring/tml/
www.vqeg.org

	 Introduction
	 Quality assessment metric
	 General architecture
	 Spatio-temporal CSF model
	 Quality scores

	 Subjective quality assessment
	 Methodology
	 Assessment conditions
	 Selection of test material
	 MOS computation

	 Results
	 PSNR estimation
	 Quality scores

	 Conclusions
	 References

