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No-reference quality assessment
of H.264/AVC encoded video
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Abstract—This paper proposes a no-reference quality assess- An alternative to subjective quality assessment is to auto-
ment metric for digital video subject to H.264/AVC encoding. matically score video quality usingbjective metrics Most
The proposed metric comprises two main steps: coding ermor ot 1he research performed in this field has been focused

estimation and perceptual weighting of this error. Error estimates the d | t ofull ref FR tri
are computed in the transform domain, assuming that DCT coef- O the development ofull reference (FR) metrics (some

ficients are corrupted by quantization noise. The DCT coefficient €xamples in [5]-[9]), which require both the original and
distributions are modeled using Cauchy or Laplace probability the distorted video data to compute the quality scores. FR
density functions, whose parameterization is performed using metrics are typically used for benchmarking image and video
the quantized coefficient data and quantization steps. Paramete processing algorithms, such as lossy encoding or wateingark

estimation is based on a maximum-likelihood estimation method . T . .
combined with linear prediction. The linear prediction scheme techniques, and media distribution networks during thengs

takes advantage of the correlation between parameter values Phases. However, FR metrics are not suitable for monitoring
at neighbor DCT spatial frequencies. As for the perceptual the quality of received media once the distribution netwisrk
weighting module, it is based on a spatio-temporal contrast setup and starts working, since the original data is usunmlty
sensitivity function applied to the DCT domain that compensates available at the receiver

image plane movement by considering the movements of the Itis thus desirable to h it t ¢ t
human eye, namely smooth pursuit, natural drift and saccadic IS thus desiranle 1o have a quality measurement system a

movements. The video related inputs for the perceptual model & the receivers that is able to provide quality feedback witho
the motion vectors and the frame rate, which are also extracted requiring the reference signals. This has led to an inctkase
from the encoded video. Subjective video quality assessmenttes research effort omo-reference(NR) quality metrics [10]-
have been carried out in order to validate the results of the metric. [17] and reduced referencéRR) quality metrics [18]-[21].

A set of eleven video sequences, spanning a wide range of content . . . .

have been encoded at different bitrates and the outcome was NR metrics rely on the received medla_ only. RR mgtrlcs can
subject to quality evaluation. Results show that the quality scores Pe placed between FR and NR metrics: information about
computed by the proposed algorithm are well correlated with the the reference is sent through a side information channel and
mean opinion scores associated to the subjective assessment. js used at the receiver for computing the objective quality

Index Terms—Video quality, Image quality, No-reference met- Scores. RR and NR quality metrics for video may contribute

ric, H.264, Parameter estimation. to enabling new services and applications, suclywlity of
experience(QoE) monitoring, scalable billing schemes, and
l. INTRODUCTION real-time adjustment of streaming parameters as a funofion

he | i ¢ digital vi the perceived quality.
OXER the last years, qua 'Fy a;ssgssment of digital video The method proposed in this paper assesses video quality
\/ has become an increasingly important matter, esRgihout requiring any knowledge about the original signal,
cially due to the transmission of video contents over ﬂ}ﬂus belonging to the NR quality metrics class. In short,

internet and mobile networks [1], [2]. Since human viewers . qists of local error estimation followed by perceptua
are the target consumers for video communications producgﬁatio-temporal error weighting and pooling

they are the most reliable source for assessing their gualit Error estimates rely on statistical properties of the block

:owever,. gathering video quality asskess'ment. data from fgse jdiscrete cosine transforifDCT) coefficient data. Since
uman viewers Is not an easy lask, since It requires proposed metric belongs to the no-reference class, it is
completion ofsubjective quality testsA standardization of pocessary to accurately estimate the distribution of thynaf

the procedures for conducting these tests is describedUn IBCT coefficients using the received (corrupted) coefficient

recommendation.s [3], [4] and the quality scores t.hat_ reswftﬂa, Related work on video coding error estimation is pre-
from such experiments are usually addressed teudgective sented in [14]-[17]. In [14], Turagat al. were probably the

scoresor mean opinion score@OS). Subjective tests must beg oy 4 thors to propose a no-reference image quality assess
carried outin a controlled environment and they requirditua ot a1gorithm that estimates videeak signal-to-noise ratio

judgments performed by several viewers. Thus, subjectifésnRy pased on the statistical properties of DCT coeffisien
quality scores are hard to get and they cannot be used in réglyir \ork is oriented to MPEG-2 encoded video and the

time applications. statistical distribution of the DCT coefficients are modele
T. Brandio is with the Department of Technology and Information Sasnc using Laplaceprobability densllty functlonsP_DFs). However,
ISCTE-Lisbon University Institute, and with Instituto del@omunicagges, as the number of DCT coefficients quantized to zero values

Lisbon; e-mail: tomas.brandao@Ix.it.pt. _ increases, the estimation of the Laplace density parameter
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distribution model by using a weighted mixture of Laplaciasonsists of two main blocks: an error estimation block, véhos

PDFs: one is computed by considering all quantized coefficifunction is to compute local error estimates, and a peregptu

values and the other is computed by considering the non-zereighting block, whose function is to weight and combine

guantized values only. However, the method in [15] stillsfai those error estimates, in order to compute a quality score.

when all DCT coefficients at the same frequency are quantiz€dis type of architecture allows to extend the use of peradpt

to zero. models (based on error weighting) to the no-reference tyuali
In a more recent work [16], Eden proposes a PSNR eassessment problem.

timation method for H.264 encoded video sequences. TheSuppose that the distribution of the original DCT coeffitien

coefficients’ distributions are modeled according to Lapla data is known. In this case, an estimate for the local mean

densities, using a low complexity algorithm for the estiimat square erroré?, at thek-th coefficient, can be performed by

of the density’s parameter, tackling the “all coefficientsag- observing the value of its quantized valuéy:

tized to zero” problem by imposing bounds in the parameter’s +00

value at the corresponding frequencies. The results dpict é2 :/ Ix (2] Xp) (X — x)%de, (@)

in [16] show that this strategy provides good PSNR estimates —0

for I-frames but the results for P and B-frames still need f@here fx (x| X}) represents the distribution of the original

be improved. DCT coefficients values conditioned to the observed value
All the above mentioned works estimate PSNR valuesf X,. Using Bayes rulefor conditional densities [29] and

which are known to be not well correlated with the humasonsidering thatP(X,|z) = 1 if = is in the quantization

perception of quality [22]. In [23], the authors propose a nanterval aroundXy, [ax;bx], and P(X|z) = 0, otherwise,

reference quality assessment method for still images subjgl) can be rewritten as:

to JPEG encoding that, besides producing PSNR estimates, )

also outputs MOS estimates that are proven to be well corre- 82— f z)( Xk — l‘) dx

lated with the corresponding subjective assessment data. T ko f

method also estimates local errors in the DCT coefficient’s

domain, but weights those errors perceptually, usingjtise Where fx(z) is the original coefficient data distribution and

noticeable differencJND) perceptual model proposed byﬁhe guantization interval limita; andb, are defined as [25]:

Watson in [24]. {

)

This paper generalizes the method proposed in [23] to the Wk = TG,
more challenging case of encoded video sequences. Although by = aq,, 3)
the H.264 standard and its corresponding integer DCT [25], {ak =Xy —(1—

if X =0;

[26] have been considered, the method can be straightly )4, if Xx #0,
applied to any DCT-based video encoding scheme. It starts
by estimating the DCT coefficient’s error, assuming thaséhewhere ¢, is the quantization step and is a parameter that
are corrupted by quantization noise only. Error estimétes t controls the width of the quantizer's dead zone aroQnth
result from this procedure are then perceptually weightgd, the reference H.264 software [30}, ~ 2/3 for intra blocks
considering characteristics of the human eye, namely itsise and o ~ 5/6 for inter blocks. The quantization steg,, can
tivity to spatio-temporal contrast. A spatio-temporalgegtual be derived from a bitstream parameter callg@®, which may
model based on the work of Kelly and Daly is used. In [27Hiffer from macroblock to macroblock [25].
Kelly devised an analytic model for the spatio-temporal CSF From (), it can be concluded that the squared error estimate
based on data collected from his experiments. His work wdgepends on the value of the quantized coeffici&pt on the
further extended by Daly in [28] by considering movemeniguantization step; (which determines,, andb;) and on the
of the eye, namelgmooth pursujtnatural drift andsaccadic coefficient distributionfx (z). X; andg; can be derived from
eye movements. the encoded bitstream. As fgi (), it is estimated from the

In order to evaluate the results of the metric derived iavailable quantized data, as will be explained in sectibn
this paper, a set of subjective tests have been conducted. ThAt this point, it is possible to estimate the PSNR of the
methodology followed in these tests is in accordance witkceived sequence, using square error estimates, insfead o

bk - ‘Xk| +Oéqk,

Recommendation ITU-T P.910 [4]. their true values:

This paper is organized as follows: in sectitin the no- o552 LN
reference quality estimation framework is introduced atsd i PSNRest 5 = 1010810 srer—;  MSEeq = — Zgi
modules are detailed in sectiotisandIV. Results and a short MSEes; N &
description of subjective tests are depicted in sectforThe (4)
main conclusions and topics for further research are gimenWhere N is the number of DCT coefficients. Note that,
sectionV]I. in accordance with Parceval’'s theorem, it is indifferent to

measure the PSNR in the pixel or in the DCT domain. The
DCT coefficient error estimates are then perceptually weih
using a spatio-temporal perceptual model based on [27], [28
The proposed framework for assessing the quality of &rne function of this model is to compute local perceptual
H.264 encoded video sequence is represented in figuie weights p,, which reflect the sensibility of the HVS to the

II. NO-REFERENCE QUALITY ASSESSMENT FRAMEWORK
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Fig. 1. Architecture of the proposed quality assessment metri

corresponding local errors. The inputs for the model are tiMherexy, is the k-th coefficient value andv is the number of

motion vectors, MV, and the video frame ratef,, both coefficients at the frequency under analysis. Usibigirf (6)

extracted from the encoded bitstream. From the weightea loteads to:

errors,piér, a global perceptual distortion metric is obtained N

using error pooling. Bur = arg mélx {Z (log 8 — log(3* + xi))} . (M

k=1

The value ofg that maximizes?) can be computed by finding

the zeros of the derivative with respect /o which leads to:
Block-based DCT coefficient data distribution of natural N

images are typically modeled by zero-melaaplace [31] or N 22 B —0. ®)

Cauchy[32], [33] PDFs. Other DCT coefficient distribution B = 3+

mpdels have. been suggest. in thg literature, such as 9eR" solve 8), Newton-Raphsds root finding method was
alized gaussian [34], gaussian mixtures [35], or genEBraIIZused, starting with a small valué.() as the initial value for

gamma [36]. The support for those distribution models CO?S' Convergence has been achieved in all experiments. The
sisted of theoretical (i.e., théentral Limittheorem) and quan- ___ " . )
fitative results (i.e., they-square and Kolmo orov-SmirnovreSUItmg value for3,,;, can be seen as a reference value, thus
> (I.€., The-sqL 9 . it will be addressed to as the “original” parameter value.
goodness-of-fit tests). On this work, the aforementionad-ze 2) Estimating3 using quantized coefficient valuelow,

mean Laplace and Cauchy models have been conS|deredret,s suppose that only quantized data is available fo i

Both models require the estimation of a single parametgl B, which is the case at the receiver (decoder) side. The
and represent a reasonable trade-off between accuracy dm,ethod can still be used:

simplicity. N
In the following, the methodology for estimating the dis- BasL = arg H?X{log H P(Xk.)}, ©)

IIl. M ODELING DCT COEFFICIENT DATA

tribution’s parameter is described for both models, usimg t

original and the quantized (corrupted) DCT coefficient data . )
where P(X},) represents the probability of having valug,

at the quantizer’s output. Assuming that the quantizemisar
A. Cauchy model with step sizeg, , which may differ from block to block, and
that it includes a dead zone arouddcontrolled by parameter
a, P(X}) can be written as:

k=1

Using K x K DCT blocks, for each horizontal/vertical
frequency pair,(i,j) € {0,..., K — 1} x {0,..., K — 1}, the

F ) fetr ; ; . b,
coefficient’s distribution is modeled by: P(X,) = / 1 ! 154 i
L By w T
fx (@) g = ;Wa ®) [ZtanT (%), if Xi=0;

_ o ’ B 1 (taun_1 (%’“) — tan~! (%")) , Otherwise.
wheref; ; is the distribution’s parameter andrepresents the (10)
coefficient’'s value at spatial frequengy, j). For simplicity,
the indexes(i, j) will be dropped along the text, but it mustUsing (L0) in (9) leads to:
be kept in mind that there is a distinct parameter value &t eac No 9
spatial frequency. By, = arg max{ log ( P (ozq;m )) n

1) Estimating 5 using the original coefficient values: L P T B 11
If the original coefficient data is known, an estimate for N1 1 b “ 11)
parameter3 can be computed using thmaximum-likelihood + Z log — (tan_l (ﬁ) —tan~! (’“))}
(ML) method [29]: PR p p
N The two summation terms inl{) correspond to the two

Bumr = arg max {log H fx(xk)} 7 (6) Possible cases inl(). In practice, the set of quantized coef-

B Pt} ficients X, has been split according to those cases: quantized
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coefficients with zero and non-zero values, respectively: A

cordingly, Ny and N; represent the number of coefficients (at ol
a given frequency), that fall in those cases. The values of
that maximizes 11) can be obtained by finding the zero of 1 Ll
the derivative with respect t8, which corresponds to: il — | =
N, _ Pk L ? _a | 4 _L i
B74al ~ BHbI
k=1 tan™? (b%) —tan~! (%) (12) 4L L
No 0 1 2 3
kg . -

Z tan~—! (quo) A, )2 2
ko=1 B (( q"") +8 ) Fig. 2. Typical coefficient histograms on I-frames under H.26¢toding
) ) (original coefficient values taken from an I-frame of seqeegtephah
If Ny < N, a solution for £2) can be found numerically,

using the same method as i8).(If No = N, theng — 0,
meaning that the estimated coefficient distribution Bic’s
delta function centered ird. In other words, the ML metho
will fail if all coefficients at a given frequency are quargt:

¢ Using @) for the laplacian and substituting’(X) by the
result in (L6) leads to:

to zero. No
3 _ _—Ab
AL argmfmx{kzllog(l e k)4
o
B. Laplace model Ny N a7
q 0] — —
Using K x K blocks, for each horizontal/vertical frequency + kZI log(e™r — 1) )‘b’“}
pair, (i,7) € {0, ..., K — 1} x {0, ..., K — 1}, the coefficient’s _ " o _
distribution for the Laplace model is described by: Again, the value that maximize4?) can be found by looking
for the zeros of the derivative with respect Xp which leads
A .
fx(@) = 5 exp (=Alal), (13 ©
2 No by N G, €N
where) is the distribution’s parameter andis the coefficient > exbkoio_l + ) (ekqlkl_1 - bk1> =0. (18
value. ko=1 k=1

1) Estimating A using the original coefficient values: Once more, the solution can be found by using an iterative
Following a procedure similar to what has been done noot finding algorithm. However, if all coefficients have hee
section IlI-A, an ML estimation for\, using the original quantized to zeroi.e. N = Ny, only the first sum term of

coefficient data, is given by: (18) stands, leading to:
N N b
A k
_ E — =0 19
AML = arg max {,;_1 (log (2> — )\|xk|> } (14) e Aok _ | (19)

where N represents the number of coefficients at the givev|y1hose solution is\ — +oo. Thus, the estimated distribution

. . is a Dirac’s delta function, which is the same phenomena as
frequency and:;, is thek-th coefficient value at that frequency. reviouslv described for the Cauchy case
Differentiating the function insidarg max{.} with respect to P y y ’
A, and finding the zeros, will lead to:

C. Improving estimation using prediction

N N
(15) In order to enable PDF parameter estimation at the frequen-

-~ =N |
> k=1 |Tk] cies where all DCT coefficients were quantized to zero, as
a result that is well-known from literature [37]. d_escrlbed at the end of sectiokisA2 gndIII—BZ, the correla- .
tion between parameter values at neighboring DCT freqeenci

2). Estimating A using quantlzed_ coeff!C|ent valuess- can be explored. Consider figule which represents a set of
suming that only quantized data is available for parametﬁ-r

estimation,\ can be computed using the ML method in th istograms for the H.264 coefficient values, one histogram p

. ; " patial frequency, in a given test frame. As can be observed
tsjin\:\?ri':/tvjri/ :SS_ ing). For this case, the probability(Xy) can from the plots, as frequency increases the histogram shape

becomes increasingly narrow (which means that the variance
by of the coefficient values decreases as frequency increases)
/ 5 exp (=Alz[)dz Additionally, figure3 depicts the “original’3 and \ values,
a . _ . (16) computed using equationd?) and (5), of a test I-frame
_ {11 —e if X =0; subject to H.264 encoding. The figures show that there is
2

AML

P(Xy) =

k

e k(e — 1), otherwise. a strong correlation between parameter values at adjacent
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frequencies. Although these plots are related to a paaticuivhere N is the number of video frames available for training,
example, a similar evolution is verified on other | framesy,, is the neighborhood size amdis a positive value that con-
and also in P and B frames. The plots also show thattls the penalty applied to the value of the weights (no&d,th
similar evolution is verified in both possible H.264 transfio for « = 0, this method falls in the pure least squares solution).
sizes { x 4 and8 x 8). In order to support these statementsSince there arév video frames, there will also b& “original”

the correlation between neighboring parameter values in aparameter values af and their corresponding neighborhood
connected neighborhood has been measured consideringvaditors® per frequency. Using matrix notation22) can be
the frames used in the experiments (see secpnFor the rewritten as:

4 x 4 sized transform, those measurements were.4f, 0.91 . )

and0.93 for I, P and B frames, respectively. Wridge = arg 1M {(0—6w)'(0—6w)+aw'w}, (23)

One possible way to explore this correlation, is t0 USRhere® is an N x K, matrix, where each element;, is
a linear predictor, as suggested in [23] for still imagesghe 1" neighbor of the value to predict in video framed is

Representing the predicted parameter valuefywheref 4 vector with the “original” parameter values at the positio
can either be the Cauchyjs or the Laplace’s), it can be g predict,i.e:

written: 9 9 9
i _ T 5 1K, 1
Op =8 w, (20) R I »
with = : : ,0= : . (24)
91 wo Oni ... Onx, On
1 wy
0= : andw = ) , The solution that minimizes2@) can be found by differenti-
: : ating with respect tow:
Ox, WK,

Vw =0 —20%(0 — Ow) + 2aw = 0, (25)

where K, is the neighborhood sizé, is the parameter value )
at thek-th neighbor anduy, is the associated linear weight. '€adingto - o

The prediction valued,, that results fromZ0) is combined Wridge = (@7 O +al)"©78. (26)
with the parameter’'s ML estimaté,,,, in order to improve The neighborhood configuration used by the error estimation
the estimation accuracy for the DCT distribution’s paranet module is illustrated in figurel. Since low-frequency coef-
Since ML estimates become more inaccurate as the ratefiefents are less vulnerable to the effects of lossy encoding
coefficients quantized to zero increases, more trust shoeildits structure has been chosen with the purpose of predicting
given to the predictor in these situations. On the other harghrameter values based on predictions already performed at
if the number of coefficients quantized to zero is low, the Mlower frequencies.
estimator will most likely get accurate results, so ther@ds  The training procedure can be synthesized in the following
real need for the predicted value. Based on these premisesteps:
simple criterion for combining,, with 6,1, is to weight them 1y for each original image in the training set, compute the
according to: “original” parameter values with8}, if using Cauchy

A A Y model, or with (5), if using Laplace model,

O =170y + (1 =10")0ar, (1) 2) for each encoded video frame in the training set, com-
whered is the final estimation for the distribution’s parameter, pute 7o <'_:1nd Oy using (12) or (18) for all spatial
ro = 52 represents the rate of coefficients quantized to zero frequencies;
and the exponent regulates how fast the confidence on the 3) for each DCT frequency, in zig-zag scan order:

ML estimates decrease with increasing The best results a) build the neighborhood matri®. The values of ;
were obtained using = 2. are computed using the valuesqgfand 01, that
result from step 2, as well as previously computed

) o predictions (if not computed yet, assume that=
D. Predictor training i

Oarr)

The goal of the training procedure is to find a weight vector b) build 6 using the values that result from step 1;
w suitable for the linear prediction scheme given2@)( One c) compute the weight vectox for the current fre-
possible way is to compute by minimizing the square error quency position, using2);
between the “original” and predicted parameter values in a d) use the resulting values of to perform predictions
given training set, subject to a penalty on the size of the at that frequency (which will be used in step (a) in
linear weights, in a procedure known R&lge regressioifi38]. posterior iterations).

According to this method, the linear weights can be found by
solving: IV. PERCEPTUAL MODEL

N The function of the perceptual model is to weight and
Wyidge = arg mm Z 244 Zwk (22) comb?ne th_e local error estimate_s that r_esult from the modul
described in the previous section. It is based on the CSF
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Bumr

(d)

Fig. 3. Typical evolution of the H.264 coefficient’s disuiion parameter as a function of the spatial frequency (ogigcoefficient values taken from an
I-frame of sequenc&tephai (a) 5 parameter (Cauchy) 4 x 4 transform. (b)\ parameter (Laplace) 4 x 4 transform. (c)s parameter (Cauchy) & x 8
transform. (d)\ parameter (Laplace) & x 8 transform.

[28], [40], [41]. In the model by Kelly [27] and Daly [28], the
spatio-temporal sensitivity is computed as a function @& th

H: B Value to predict spatial frequencyy,, and the retinal velocityyz, as follows:
[J Neighbourhood

CSF(vg, fs) = Scocavr(2mey f5)? exp (_4]7:61]”5)’ 27)

max
Fig. 4. Neighborhood configuration used in the experiments.

with the termsS and f,,.. defined as:

log (02;11:;) ’3> and f,,, — —

covp + 2

S = <31+82

=
o
£

w

The constants:;, s» and p; have been set t6.1, 7.3 and
45.9, respectively [27]. The parameters, ¢; and co allow
model tunning and have been set to the same values as in [28]:
co = 1.14, ¢4 = 0.67 and ¢ = 1.7. Figure 5 depicts the
resulting CSF.

The spatial frequency, can be computed as the Euclidean
- - 102 norm of the subband spatial frequency components:

10

-2
10 0
10 — /2 2 28
retinal velocity 10° 10" spatial frequency fs fT + fy : ( )

(deg./second) (cycles/deg.) ) )
In the K x K block-wise DCT domain, the componenfs
Fig. 5. Spatio-temporal contrast sensitivity function @mhén the model by and fa of the spatia| subband frequency (in Cyc|es per degree)

=
o

=
o
N

contrast sensitivity
=
o

B
SRS
M

Daly [28]). at location(i, j) of a DCT block are given by:
_ ¢t _J
derived in [27] and extended in [28], accounting for the Fy = 2Ky, and f = 2K, (29)

mechanics of the human eye. Since the goal of the metri . .
. . Y 9 . w%ereax and o, are the observation angle of a pixel along
proposed in the paper is to perform no-reference video tyual{h horizontal and vertical directions, respectively. Dihser-

assessment, only video elements available at the decoeler aF

used: the motion vectors/V, and the video frame rat,.. vatr|r<1)n tarégle of a pixel along a generic directigncan be
In the following, a brief description of the model is pro-CO puted as.
vided, detailing the necessary steps for computing the esti ly ly

mated video quality scores. (rp = arctan 2dN, ~ 2dN,’ (30)

) wherel, is the height/width of the images displayed on the

A. Spatio-temporal CSF model screend is the distance from the observer to the screen and

It his known that thehuman visual systerfHVS) is more N, is the vertical/horizontal resolution of the displayedead
sensitive to image contrast rather than the absolute lurmo&a sequence.
values [1], [39]. Contrast can be defined as the ratio betweenThe object velocity on the retina plane is strongly related
the local luminance variation and the average backgroumdth the object velocity in the image plane. However, the
luminance.Contrast sensitivitys the inverse of the minimum human eye has the ability to track objects, slowing down the
contrast necessary for an observer to detect a stimulus.véocity of the object in the retina plane. This characteris
spatio-temporalContrast sensitivity functio(CSF) quantifies called thesmooth pursuit eye movemgBPEM). Additionally,
the evolution of the HVS sensitivity to luminance changethere are other movements of the eye, namely rihtural
and depends on the spatial and temporal frequencies of thi#t and saccadiceye movements [42]. The former is a slow
stimulus. Different CSFs have been proposed in literat2r¢ [ eye movement that causes a little amount of motion in the
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retina plane, while the latter are fast eye movements caudbd testor impaired sequence (in our case, the result of lossy
by changing the eye gaze to new image plane locations. encoding). The observers are then asked to judge the quality
According to [28], the retinal image velocity can be comef the impaired sequence with respect to the reference. A
puted as: five point impairment scale has been used, with grades from
VR =V — Vg, (81) “1 — very annoying” to “5 — imperceptible’42 observers
mostly students) participated in the subjective expenisie
hey were screened for visual acuity and color blindness.
¥he environmental viewing conditions were within the value
recommended in [4].
vp = min{gs X v; + VN UMAX T (32) The reference sequences used in the tests are represented in
i ) figure 6. These sequences are in CIF form&iX x 288), with
wheregs is the SPEM gain, set t0 0.92j;;v anduaax ar€ 5 frame rate 080 Hz, and have been selected in order to span
the minimum and maximum velocities associated (0 the eygyije range of spatio-temporal activities. The sequenezs w
natural drift and saccadic eye movements, sél.16 and80 o coqed using the reference H.264 [30] software tools. Each
deg/s, respectively. , o sequence has been encoded using the main profile at different
The angular velocity on the image plang, is given by bit rates, which were in the range frod2 to 2048 kbit/s. A
_ 9 9 GOP-5 structure with twoB frames inserted betweefy P
v fT\/(MV”%) +(MVyay)?, (33) frames (BBPBBP...) has been used in all encodiﬁgruns.
where f,. is the frame rate of the video sequence anfhe low complexity rate-distortion optimization algorith
(MV,,MV,) are the components of the motion vector alongrovided on the software has been used. The result is a set of
the horizontal and vertical directions, respectively. Toen- 50 encoded sequences (impaired sequences), whose qualities
ponents of the observation angle of a pixel, and «,,, are were judged by the test participants.

wherev; is the angular velocity of the object on the imag
plane andvg is a compensation term associated to the e
movements, computed as:

those resulting fromZ29). The resulting MOS values and the video sequences used in
the subjective quality assessment tests, as well as adalitio
B. Quality scores details about the test procedures, are available online at

Based on the result of the CSF compute at each Iocatigtr%p://amaha.lmg.Ix.|t.ptftgsb/H264testl

of the block-wise DCT domain, a global distortion value for
each video frameD is computed usind.4 error pooling, as B. Prediction accuracy

suggest in [9], [43], according to: The training of the parameter prediction module was per-

/ R 4 formed using about one third of the available video samples,
Dy =& Z(gkpk) ’ (34) following the procedure described in sectiihD . Training
F has been performed separately for each frame type. Based on
where p, = CSKuv,,, fs,) is the result of the contrastthe results presented in [17], the Cauchy model was assigned

sensitivity function at thek-th DCT coefficient’s location and to the I-frames, while the Laplace model was assigned to the
&, is the error estimate that results from the error estimatiéhand B frames.

module. The use ofL4 error pooling emphasizes higher The effectiveness of the proposed prediction scheme has
distortions perceived by the viewer, which may drawn higeen evaluated using the remaining samples. To illusthete t
visual attention from smaller distortions. To concludee thresults, tabld-a) presents the root mean square (RMS) error
same pooling process is applied along the time axis in oalerfietween “original” and ML estimated parameter values for
get a global distortion metric for the encoded video segeendhe I-frames (previously normalized to zero mean and unitar

variance). Similarly, tabld-b) presents the RMS between
D, = 4/2 Dfi4. (35) “original” and prediction estimates alone. As for table),

i it presents the error that results from combining predictio
with ML estimates. It can be observed that the improvement
brought by the prediction scheme becomes more noticeable
as frequency increases. For the low frequency coefficients,
the number of neighborhood elements is small, thus the
improvement brought by using prediction is not as effective
o ) as for the high frequency coefficients.

A. Subijective quality assessment In addition, figure7 depicts an example that illustrates the
In order to validate the results of the proposed metric, a sttimation of the Cauchy parametét, in the presence of

of subjective quality assessment tests have been carried U264 encoding. Figurd-a) shows the “original” values of

Those tests performed in accordance with tegradation [ that result from solving ), which can be seen as the

Category Rating(DCR) described in Recommendation ITUno-reference estimation benchmark. Figukd) shows the

T P.910 [4], where video sequences are presented in paresults of ML parameter estimation based on the quantized

the first to be displayed is called thieferencesequence (in data. As can be observed from this plot, the parameter could

our case, the original sequence) while the second is calledt be estimated at seven spatial frequencies, due to all DCT

Note that, for longer video sequences, a granularity pefidod
computingD, could be definedg.g, D, could be computed
every 10 seconds of video).

V. RESULTS


http://amalia.img.lx.it.pt/~tgsb/H264_test/
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Fig. 6. Video sequences selected for the subjective testsn Feft to right, up to downCity; Coastguard Container Crew, Football, Foreman Mobile &
Calendar Silent Stephan Table-tennis Tempete

TABLE |
PARAMETER ESTIMATION ERROR

J J J
— — -
i/ 008 066 092 181 ] 008 044 030 030 ¢/ 0.08 025 029 0.30
044 120 138 215 042 026 0.28 0.28 028 0.26 0.28 0.29
0.87 202 206 273 0.38 030 0.29 0.27 037 032 030 0.27
299 396 369 4.72 0.38 046 0.38 0.32 040 045 038 0.32
(a) ML estimates alone. (b) Prediction estimates. (c) ML combined with prediction.

“original"
—©&—— ML alone
—+—— Prediction + ML

5 10 15
Frequency position (zig—zag order)

(d)

Fig. 7. Example of parameter estimation (on a H.264 encodedré&y using Cauchy model). (a) “Original” values. (b) ML estiesadlone. (c) Combining
ML with prediction. (d) Comparison.

(b)

coefficients quantized to zero at those frequencies. Aigrgu been performed in order to compensate for the occurrence of
the predictor, the missing parameter values are computeéd akippedmacroblocks, which become quite common in P and B
the estimates are improved, as shown in figire). For frames as the encoding bit rate decreases. This compeamsatio
a better comparison, figur@é-d) depicts in a 2D plot the procedure is given by:
information of the previous plots.

Note that, since all video sequences were encoded using the

H.264’s main profile, the results and corresponding pIOtane\NhererS is the rate of skipped MBs within the frame under
obtained for thel x 4 sized transform size only. NeverthelessamilysiS MSE; is the MSE of the reference frame(s) and

and considering the plots depicted in figuigs) and d), @ \gg s the mean square error estimate computed by the
similar process is expected to work in higher H.264 pmﬁ'eﬁlgorithm considering the nonskipped MBs only.

where the8 x 8 transform is allowed. In such cases, distribution . .

. . ’ For comparison purposes, the algorithm proposedEtgn
parameter predictors should be trained separately for eagh P purp d prop by
transform size.

MSEest= 75 X MSEer + (1 — 7,) x MSE.,  (36)

[16] has been implemented. This algorithm models co-
efficient distribution using a Laplace PDF, and uses a low
complexity parameter estimation method for computikg

Using the full set of encoded video sequences, the PSNR . log(1 — ro)
has been estimated and compared with its true value. Results AEden = 782770, 37)
aq

are depicted in figure8-a) to d), for the different frame
types. As can be observed from the plots, the proposedhereq is the average quantization step used at a given DCT
method is quite accurate. Note that an additional proceldase frequency within one frame and the remaining parameters are
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50 50 50 50
—~ Training set —~ Training set —~ Training set ~~ Training set
540 : 540 : o %40 : §4O :
@ @ o o
Z Z Z Z
n 30 v 30 n 30 . S v 30
o o o o
(] (] (] (]
> > > >
£ 20 ¢ = 20 = 20 = 20

10 10

10 20 30 40 50 0 20 30 40 50 10 20 30 40 50 0 20 30 40 50
Estimated PSNR (dB) Estimated PSNR (dB) Estimated PSNR (dB) Estimated PSNR (dB)
(@) (b) (c) (d)
Fig. 8. No-reference PSNR estimatign. true PSNR. (a) I-frames. (b) P-frames. (c) B-frames. (d) Alhfes.
TABLE |I . . - .
PSNRESTIMATION ERROR estimated MOS scores in the training set, uglng_taeenb_erg—
Marquardt method. A sketch of the resulting curve is also
Eden’s [16] Proposed depicted in figure9-a). Note that this procedure implicitly
Frame Type | €avg €rms P | €avg Erms P accounts for the influence of other perceptual factors, ssch

' 130 157 099 072 091  0.99 the effect of the deblocking filter used in the H.264 standard
P 207 252 097 082 109 098

B 279 322 0097 087 112 098 Figure 9r-]b)_ shows Ithe re;\sultmgbnorrgahze% Mr?SN;stlmate_s
Al 250 396 097 084 110 098 versus their true values. As can be observed, the obgectiv
quality scores resulting from the proposed algorithm aré we
correlated with the subjective quality assessment data.

as described throughout the paper. Additionally, the étigor In [44], VQEG suggests a set of statistical measurements in

addresses the “all coefficients quantized to zero” problgm Brder to benchmark the performance of an objective metric.

imposing a bound on the value afin those situations. Based T"ese performance indicators have been computed using the
on information provided by the author, these bounds have be@lidation set and can be observed in tatle Pearson

set to the maximum value of found in lower frequencies, correlation and Spearman rank order coefficients are both

since it is not likely to get smaller values of as frequency @P0ve 0.9, which is a good result for video. The RMS is
increases. smaller than 0.4, which means that most of the MOS estimates
Tablell depicts a performance comparison of the propos&égmputed by the metric are within the grades given by the
method with the implementation of [16]. The input for botfPPServers. . _
methods is the full set of encoded video sequences. Thé=ompared with other results found on the literature, the
Symbolse .y, €.ms andp represent, respectively, the a\,eragg.rop')osed method seems to outperform algorithms desigmed fo
error, the root mean square error and the correlation, estweéimilar purposes. In [13]Ries et al.propose a no-reference
true and estimated PSNR values. As can be observed friifi€o quality assessment metric where the quality scomstre

the table, the proposed method shows higher PSNR estimatign combining a set of motion features extracted at the
accuracy regardless of the frame type. decoder. The method is improved in [45], where a different

parametrization for estimating MOS is used according to a
previous classification of the video content. These methods
were evaluated using SIBH2 x 240) H.264 encoded video

The results for quality assessment have been evamateds@ﬁuences, and the declared performance in [13] and [45] are
comparing the quality scores retrieved by the algorithmhwitc — .80 and CC = 0.86, respectively, which are below
the ones that result from the subjective tests. the results of the method proposed in this paper.

Figure 9-a) depicts the the value of the propose perceptual |, [20], Oelbaumand Diepold propose a reduced reference
distortion metric,D,, that results from3S), versus the corre- method for H.264 encoded sequences where several features
sponding true MOS values. Following a procedure suggest Byiracted from the video are combined (most of them are
the Video Quality Experts GrougVQEG) in [44], a logistic - atifact measurements and motion oriented features), lad t
function was used in order to map thg values into the MOS (egyits are adjusted based on two parameter values sent
range 1-5, used in the experiments. The estimated MOS Va'H%ugh a side channel. The declared performance of this

D. Objective Quality assessment

are therefore the result of: method isCC = 0.84, RC = 0.80 and OR = 0.58, which
Estimated MOS= a; + a1+ —, (38) are z?\lso below the results achieved by the algorithm prapose
1+ ee2ta3% in this paper.

where ag to a3 are curve fitting parameters. In order to A standard for reduced reference quality assessment of
compute these parameters, the available data points hawe kmable television signals is given in Recommendation ITU-T
split into training and validation sets, using one half oé thJ.246 [21]. This metric -Edge-PSNR- is based on edge
samples for each set. Parameter values are those that rasalps extracted from the original signals, which are sent to
from minimizing the square differences between true aride receiver. The performance of this metric increases as th



10 CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010 (ACCEPTED SUBMIEDN)

[2] G. Ghinea, G.-M. Muntean, P. Frossard, M. Etoh, F. Speaarand

6 + Training set 6 + Training set H. Wu, “IEEE Transactions on Broadcasting — Special issu&qoality
50 o o Validation set si| o Validation set issues on mobile multimedia broadcasting”, vol. 7, no. 3, phft |
0 * September 2008.
o4 8 4 [3] ITU-R, “Recommendation BT.500-11 — Methodology for théjactive
% 3 = 3 assessment of the quality of television pictures,” 19742200
= g [4] ITU-T, “Recommendation P.910 — Subjective video qualissessment
=2 2 methods for multimedia applications,” 1999.
1 { [5] S. Winkler, “A perceptual distortion metric for digitalotor video,” in
! ° proc. of SPIE vol. 3644, S. Jose, USA, 1999, pp. 175-184.
% 1 2 3 4 5 & 7 8 0 [6] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessmerisbd
S . 0 1 _2 3 4 5 6 on structural distortion measuremenitjiage Communication - Special
Perceptual distortion metrie a(f) Estimated MOS issue on Objective Video Quality Metrjcgol. 19, no. 2, pp. 121-132,
(@) (b) February 2004.
Fig. 9. MOS estimation results. (a) Perceptual distortiorrimes true MOS  [7] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, "Image gi}ahssess-
values. (b) Estimateds true MOS values. ment: from error \{lSlblIlty to structural S|m|Iar|ty,’lEEE_ Transactions
on Image Processingrol. 13, no. 4, pp. 600-612, April 2004.
TABLE 1l [8] E. Ong, X. Yang, W. Lin,,’ Z. Lu, and S. Yao, “Perceptual dtyametric
EVALUATION OF THE PROPOSED METRIC for compressed videos,” iproc. of IEEE International Conference on
Acoustics, Speech and Signal Processingl. 2, Philadelphia, USA,
March 2005, pp. 581-584.
Root mean sqlua.re errorﬁ(R.MS) 0.441 [9] A.B. Watson, J. Hu, and J. F. McGowan, “DVQ: A digital videuality
Pearson correlation coefficient (CC) ~ 0.938 metric based on human visionJournal of Electronic Imagingvol. 10,
Spearman rank order coefficient (RC)  0.949 no. 1, pp. 20-29, January 2001.
Outliers ratio (OR) 0.071 [10] H. Wu and M. Yuen, “A generalized block-edge impairment maefor

video coding,”"IEEE Signal Processing Lettersol. 4, no. 11, pp. 317—
320, November 1997.

. . . . . [11] L. Meesters and J.-B. Martens, “A single-ended bloeks measure for
§|de channel bandW|dt_h increases.( as the nqmber of points JPEG-coded imagesSignal Processingvol. 82, no. 3, pp. 369-387,
in the sent edge map increases). The resulting value€'or March 2002. _ _
are in the rang®.81 — 0.83. Again, our method shows better(12] F.Pan, X. Lin, S. Rahardja, W. Lin, E. Ong, S. Yao, Z. Loda. Yang,

. . . “A locally adaptive algorithm for measuring blocking artifa in images
performance. However, it must be kept in mind that the method 4 videos, Signal Processing: Image Communicatioml. 19, no. 6,

proposed in this paper is adapted to DCT-based video engodin  pp. 499-506, July 2004.
while the standardized method [21] is not distortion specifi[13] M. Ries, O. Nemethova, and M. Rupp, “Motion based refeesn
free quality estimation for H.264/AVC video streaming,” proc. of
International Symposium on Wireless Pervasive ComputihgJuan,
VI. CONCLUSIONS Puerto Rico, February 2007.

. . 4] D. S. Turaga, Y. Chen, and J. Caviedes, “No-referendg¢fP8stimation
A no-reference quality assessment algorithm for H'264/AV% for compressed picturesfmage Communication - Special issue on

encoded video sequences has been proposed. The algorithmonbjective Video Quality Metrigsvol. 19, no. 2, pp. 173-184, February
comprises a local error estimation module followed by an 2004

; ; i~ 5] A. Ichigaya, M. Kurozumi, N. Hara, Y. Nishida, and E. Naka “A
error weighting module based on a perceptual spatio tealhpo[ll method of estimating coding PSNR using quantized DCT coeffiisje

model. IEEE Transactions on Circuits and Systems for Video Teduyypl
The error estimation module is able to compute PSNR vol. 16, no. 2, pp. 251259, February 2006.
estimates based on the quantization steps and DCT coefficiéfl A- Eden, “No-reference estimation of the coding PSNRHa264-coded

. . sequencesJEEE Transactions on Consumer Electronigsl. 53, no. 2,
values taken from an H.264 bit stream. The results of this pp(_q667_674' May 2007.

module outperform the state-of-the-art algorithm in [IBje [17] T. Brandio and M. P. Queluz, “No-reference PSNR estimation algorithm
no-reference quality scores are then computed based on the for H.264 encoded video sequences,pimc. of EUSIPCO - European

error estimates and on the motion vectors extracted fr Signal Processing Conferenckeausanne, Switzerland, August 2008.
] Z. Wang, G. Wu, H. Sheikh, E. Simoncelli, E.-H. Yang, andBovik,

the bit stream. These MOS estimates correlate well with the™ “Quality-aware images”IEEE Transactions on Image Processing
human perception of quality and show better results thaeroth  vol. 15, no. 6, pp. 1680-1689, June 2006.

algorithms, derived with the same purpose, found in liteeat [19] M. Masry, S. Hemami, and Y. Sermadevi, "A scalable wavbised
. . video distortion metric and application$EEE Transactions on Circuits
As for future work, the algorithm should be extended in  and systems for Video Technologgl. 16, no. 2, pp. 260-273, February

order to deal with transmission errorse(, packet losses). 2006. _ o _
Another topic that could increase the performance of thed] T. Oelbaum and K. Diepold, “A reduced reference videaldy metric

. . . . . for AVC/H.264,” in proc. of EUSIPCO - European Signal Processing
algorithm is the introduction of luminance and local costra ConferencePoznan, Poland, September 2007, pp. 1265-1269.

error masking, using a more complete HVS perceptual modeli] ITU-T, “Recommendation J.246 — Perceptual visual quatiteasure-

ment techniques for multimedia services over digital cablevision

A networks in the presence of a reduced bandwidth refere26€8.
CKNOWLEDGMENT [22] B. Girod, “What's wrong with mean-square error?” Digital Images

The authors would like to thank Arnd Eden for providing and Human VisionA. B. Watson, Ed. MIT Press, 1993.

i : : : : 23] T. Brandio and M. P. Queluz, “No-reference image quality assessment
them additional details for the implementation of his algd?S] based on DT doma"?statistic Shgnal Processingg\llolg88, XO. 2 op.
rithm. 822-833, April 2008.

[24] A. B. Watson, “DCT quantization matrices optimized fordividual
images,” inproc. of SPIE Human Vision, Visual Processing, and Digital
REFERENCES Disglay 1V, pS Jose, USA, 1993. ? ’
[1] H. R. Wu and K. R. RaoDigital Video Image Quality and Perceptual [25] ITU-T, “Recommendation H.264 — Advanced video coding deneric
Vision CRC Press, 2006. audiovisual services,” 2005.



BRANDAO AND QUELUZ: NO-REFERENCE QUALITY ASSESSMENT OF H.264/AVCNEODED VIDEO 11

[26] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narrosckk@ereira, [42] R. CarpenterMovements of the eyesPion, 1988.
T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tmo [43] C. Lambrecht, “Perceptual model and architectures fole@i coding

performance, and complexityCircuits and Systems Magazine, |IEEE applications,” Ph.D. dissertatioicole Polytechnique &krale de Lau-
vol. 4, no. 1, pp. 7-28, Quarter 2004. sanne, 1996.

[27] D. H. Kelly, “Motion and vision II: stabilized spaticemporal threshold [44] VQEG, “Final report from the video quality experts gmwn the
surface,”Journal of the Optical Society of Americeol. 69, no. 10, pp. validation of objective models of video quality assessmehgsp |1,
1340-1349, October 1979. www.vgeg.org, Tech. Rep., August 2003.

[28] S. Daly, “Engineering observations from spatiovetp@nd spatiotem- [45] M. Ries, O. Nemethova, and M. Rupp, “Performance evadnatf
poral visual models,” invision model and applications to image and mobile video quality estimators,” iproc. of EUSIPCO - European
video processingC. van den Branden Lambrecht, Ed. Kluwer, 2001. Signal Processing ConferencBoznan, Poland, September 2007.

[29] R. Duda, P. Hart, and D. StorlRattern Classification - 2nd Edition
Wiley-Interscience, 2000.

[30] Heinrich-Hertz-Institut, “JM 12.4 — H.264 referenceftsvare,” Decem-
ber 2007, available online at http://iphome.hhi.de/sueitml/.

[31] E. Lam and J. Goodman, “A mathematical analysis of the DCA&ffco
cient distributions for images|EEE Transactions on Image Processing
vol. 9, no. 10, pp. 1661-1666, October 2000.

[32] J. Eggerton and M. Srinath, “Statistical distribuoof image DCT
coefficients,” Computers & Electrical Engineeringvol. 12, no. 3-4,
pp. 137-145, January 1986.

[33] Y. Altunbasak and N. Kamaci, “An analysis of the DCT caosg#nt
distribution with the H.264 video coder,” iproc. of IEEE International
Conference on Acoustics, Speech and Signal Proceseuig3, Mon-
treal, Canada, May 2004, pp. 177-180. since 2002. He is also a researcher at the Instituto

[34] F. Muller, “Distribution shape of two-dimensional DCDefficients of de Telecomunicaies, Lisbon Portugal. His main
natural images,Electronic Letters vol. 29, no. 22, pp. 1935-1936, research interests are digital signal and image processing.

October 1993.

[35] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the disition of
the DCT coefficients,” inproc. of IEEE International Conference on
Acoustics, Speech and Signal Processiig). 5, Adelaide, Australia,
April 1994, pp. 365-368.

[36] J.-H. Chang, J. W. Shin, N. S. Kim, and S. Mitra, “Image [zioitity
distribution based on generalized gamma functioBREE Signal Pro-
cessing Lettersvol. 12, no. 4, pp. 325-328, April 2005.

[37] J. Price and M. Rabbani, “Biased reconstruction for GRiecoding,”
IEEE Signal Processing Lettersol. 6, no. 12, pp. 297-299, December
1999.

[38] T. Hastie, R. Tibshirani, and J. Friedmafhe Elements of Statistical
Learning Springer, 2001.

[39] S. Winkler, Digital video quality Wiley, 2005.

Tomas Branddo was born in Lisbon, Portugal, in
1975. He received thieicenciaturaand M.S. degrees

in Electrical and Computer Engineering from the In-
stituto Superior €cnico (IST), Technical University
of Lisbon, Portugal, in 1999 and 2002, respectively.
In 2006 he enrolled in the PhD program at the
Technical University of Lisbon. He is currently a
senior assistant lecturer at the ISCTE-IUL, where
is has been lecturing Computer Architecture courses

Maria Paula Queluz received the B.S. and the M.S.
degrees in Electrical and Computer Engineering
from the Instituto Superior &cnico (IST), Technical
University of Lisbon, Portugal, in 1985 and 1989
respectively, and the PhD degree from the Catholic
University of Louvain, Louvain-la-Neuve, Belgium,
in 1996. Since 1985, she has been with the De-
partment of Electrical and Computer Engineering,
IST, where she is currently Assistant Professor.
She is also a research member at the Instituto

[40] J. G. Robson, “Spatial and temporal contrast sensjtfuihctions of the . de Telecomunicdies, Lisbon, Portugal. Her main
visual system,"Journal of the Optical Society of Americeol. 56, pp.  scientific interests include image analysis/processingytight protection and
1141-1142, 1966. mobile communications.

[41] J. Yang and W. Makous, “Spatio-temporal separability dontrast
sensitivity,” Vision Researchvol. 34, no. 19, pp. 2569-2576, 1994.



	Introduction
	No-reference quality assessment framework
	Modeling DCT coefficient data
	Cauchy model
	Estimating beta using the original coefficient values
	Estimating beta using quantized coefficient values

	Laplace model
	Estimating lambda using the original coefficient values
	Estimating lambda using quantized coefficient values

	Improving estimation using prediction
	Predictor training

	Perceptual model
	Spatio-temporal CSF model
	Quality scores

	Results
	Subjective quality assessment
	Prediction accuracy
	PSNR estimation
	Objective Quality assessment

	Conclusions
	References
	Biographies
	Tomás Brandão
	Maria Paula Queluz


