
DESIGN AND PERFORMANCE OF A NOVEL LOW-DENSITY PARITY-CHECK CODE
FOR DISTRIBUTED VIDEO CODING

João Ascenso1, Catarina Brites2, Fernando Pereira3

1joao.ascenso@lx.it.pt, 2catarina.brites@lx.it.pt, 3fp@lx.it.pt
1Instituto Superior de Engenharia de Lisboa, 2,3Instituto Superior Técnico, 1,2,3Instituto de Telecomunicações

ABSTRACT

Low-density parity-check (LDPC) codes are nowadays one of the
hottest topics in coding theory, notably due to their advantages in
terms of bit error rate performance and low complexity. In order to
exploit the potential of the Wyner-Ziv coding paradigm, practical
distributed video coding (DVC) schemes should use powerful error
correcting codes with near-capacity performance. In this paper, new
ways to design LDPC codes for the DVC paradigm are proposed and
studied. The new LDPC solutions rely on merging parity-check nodes,
which corresponds to reduce the number of rows in the parity-check
matrix. This allows to change gracefully the compression ratio of the
source (DCT coefficient bitplane) according to the correlation
between the original and the side information. The proposed LDPC
codes reach a good performance for a wide range of source
correlations and achieve a better RD performance when compared to
the popular turbo codes.

Index Terms — Wyner-Ziv video coding, LDPC codes

1. INTRODUCTION

The theoretical foundations of distributed video coding (DVC), the
Slepian-Wolf and Wyner-Ziv theorems, suggest that it is possible to
independently encode and jointly decode two statistically dependent
sources, X and Y, with the same performance as when the two sources
are encoded and decoded together. In DVC, a single decoder performs
the joint decoding of all encoded sequences, exploiting the statistical
dependencies between them. However, to achieve such target RD
performance in a practical DVC system, it is necessary to use
powerful channel codes, notably the turbo and low-density parity-
check (LDPC) codes.

The main goal of this paper is to design efficient low-density parity-
check codes for the distributed video coding (DVC) scenario. The
LDPC codes are a class of linear block codes that can approach the
Shannon limit quite closely [1] for several types of transmission and
storage channels. The most important issue in the design of an LDPC
based DVC system is the capability to extract a high number of codes
at fine granular compression ratios (or code rates), since in the DVC
setting it is necessary to finely adapt the LDPC code compression
ratio to the varying statistics of the correlation noise, i.e., to the errors
between the side information Y and the original data X. In a DVC
scenario, the correlation noise varies significantly, depending on
several factors, such as the motion content of the sequence and the
efficiency of the motion estimation/compensation techniques
employed at the decoder; therefore, a wide amplitude of compression
ratios must be achieved while maintaining a high RD performance.
Moreover, the high compression ratio codes must be embedded in the
lower compression ratio codes, i.e. the bits received at lower rates
must be useful and thus combinable with the additional bits received
when a higher rate is further targeted. This type of codes are referred
in the literature as rate-compatible codes and are used in solutions
(e.g. wireless communications) where the transmission channel
statistics vary over time and a feedback channel is available.

Several rate-compatible strategies can be followed to obtain
different compression ratios, such as extending, puncturing, or
splitting. In [2,3], a practical solution is proposed where a base code is
constructed for a high compression ratio (i.e. the minimum amount of
bits to send); to obtain lower compression ratios, the base code is
recursively split into two smaller codes until the necessary
compression ratio is obtained. In [2], extended-Hamming and product-
accumulate codes are used as base codes whereas in [3], regular and
irregular constructions are considered. In this paper, a different
approach is proposed: a low compression ratio (equal to 1:1) LDPC
code is first built; then, to obtain higher compression ratios, it is
proposed to merge the parity-check nodes of the LDPC base code
until the necessary rate is achieved. This novel approach is effective
to obtain a wide range of compression rates and allows an effective
optimization of the LDPC code structure, a major advantage when
compared to previous work [2,3]. The proposed LDPC code structure
is optimized for low compression ratios, where certain graph
structures (e.g. cycles) can be avoided, since for high compression
ratios it is more difficult or even impossible to condition the graph
structure, as will be seen in Section 3. The LDPC codes considered
here are carefully designed with a selective cycle avoidance algorithm
[4] in order to obtain an optimized structure and take into account the
node merging operation that will occur to obtain low rate codes.

In the context of DVC, the most common Slepian-Wolf code is still
the popular turbo codes. However, the LDPC code proposed in [2] for
distributed source coding (DSC) allows higher efficiency and is being
applied to DVC codecs, such as the DISCOVER codec [5], a state-of-
the-art solution for DVC.

This paper is organized as follows: in Section 2, a brief overview of
LDPC codes is presented; in Section 3, the novel techniques to design
LDPC codes are proposed and in Section 4 the LDPC code RD
performance is evaluated. Finally, in Section 5, some final remarks
are drawn.

2. LOW-DENSITY PARITY-CHECK CODES

As illustrated in Figure 1, LDPC codes can be represented graphically
via a bipartite graph or factor graph defined by two node types (solid
squares and circles in Figure 1): the variable nodes (or v-nodes),
which represent the codeword bits, and the check nodes (or c-nodes),
which represent the parity-check equations of the code's parity-check
matrix H with dimension m×n. The matrix H is so named because it
performs m = n − k parity checks on a received codeword, where k
represents the amount of data to code and n represents the total
amount of data (of which n − k is redundant). The parity-check matrix
H of the LDPC code is sparse, i.e., it has a low density of 1’s: wr « n
and wc « m with wr and wc representing the number of 1’s in each row
(c-node degree) and column (v-node degree), respectively. The v-
nodes are connected by edges to c-nodes according to matrix H. Each
edge connecting a v-node j to a c-node i implies hij=1, where variable
j is a component of the parity-check equation of row hi. Each of the
parity-check equations, when multiplied by a codeword x, must fulfill

Hx = 0, i.e. the bit values connected to the same c-node must sum to
zero. When using LDPC codes for the general case of DSC, the most
popular approach is to adopt the scheme suggested by Wyner in 1974
[6], for linear binary block codes. For a certain source x, the encoder
calculates the syndrome s = Hx (represented by dotted nodes in Figure
1), and sends it to the decoder; the encoder code rate is, in this case,
m/n, i.e., the compression ratio is n:m. After, the decoder constructs
the side information y, and with the help of a correlation noise model
between x and y, it attempts to reconstruct the source x using a belief
propagation or maximum likelihood decoding algorithm. This type of
approach was first used in [7] for simple codes and extended in [8] to
the highly efficient LDPC codes.

Figure 1 – LDPC syndrome code.

Basically, in the context of LDPC codes, by calculating Hx the
encoder maps the n-length input sequence x into one of 2n-k
syndromes, through the division of the sequence space (with 2n
sequence possibilities) into 2n-k cosets, each one labeled by one
distinct syndrome. All the 2n-k cosets are disjoint and contain 2k
codewords with maximum Hamming distance, which guarantee a
good performance over the binary symmetric channel [8].

3. DESIGNING NOVEL LDPC CODES FOR DVC

An LDPC code appropriate for the DVC scenario must fulfill three
main requirements: i) encoding complexity: must be kept as low as
possible in order to allow shifting most of the complexity to the
decoder; ii) rate-compatible strategy: the code must be rate adaptive
and incremental, i.e., the codes at higher rate should be embedded in
the codes of lower rates, to allow a dynamic adaptation of the code
rate by using a feedback channel; iii) compression efficiency: the code
must have a high rate performance (ideally close to H(X|Y), the
Slepian-Wolf limit) for a wide range of compression ratios, to cope
efficiently with changes in the correlation between X and Y. The first
requirement is usually met by syndrome based LDPC coding; since
the matrix H is sparse, the encoder complexity is kept low and
proportional to the number of edges (or 1’s) in the LDPC code.
Regarding the requirement ii), a novel technique is proposed based on
c-node merging to obtain a rate-compatible strategy (Section 3.1),
instead of the c-node splitting technique used in [2,3]. The proposed
approach has a major advantage: the LDPC high rate base code can be
optimized instead of a low rate sub-code, allowing to use powerful
graph conditioning techniques (e.g. [4]), which fail when applied to
the low rate sub-code, due to their structure (low amount of rows or c-
nodes). Thus, to fulfill the requirement iii), the novel strategies to
design the LDPC code (Section 3.2) take into account the check node
merging technique, make a selective avoidance of cycles in both base
and sub-codes and carefully place the variable nodes to break the error
bursts typical in the side information.

3.1. Rate-compatible LDPC code by check node merging

This section proposes a technique to obtain a rate-compatible LDPC
code by merging any two check nodes, as long as they are connected

by a 2-degree syndrome node. When two check nodes are merged, m
decreases by one unit, and a higher compression ratio is obtained; the
c-nodes merging operation corresponds to the sum of two H rows. The
technique to obtain a new (merged) check node, that contains the
edges merged of the two old c-nodes, is quite simple, as Figure 2
illustrates:
1. A base code of rate = 1 is generated, corresponding to an H matrix
of size 6×6, as shown in the Figure 2 example.
2. Then, c-nodes are merged according to a predefined order: (c0 and
c1) and (c4 and c5), and higher compression ratios (up to 3:2) are
successively obtained from the same base code. The lower rate codes
obtained are referred here as sub-codes.

Figure 2 – Factor graphs when check nodes are merged.

This method can provide an elegant way to obtain a rate adaptive
LDPC code, since the graph structure can be adapted to obtain fine
granular code rates; however, it does not provide a rate-compatible
LDPC code in the sense that a set of syndrome bits cannot be
combined with previously sent syndrome bits. To obtain this
characteristic, it is necessary to include at the encoder, for each pair of
c-nodes to merge, a 2-degree syndrome node, as shown in Figure 3.

Figure 3 – Syndrome node placement to obtain the graph structure of

Figure 2 (shaded nodes are punctured).
To obtain the higher compression ratio 3:2 in Figure 2, the encoder

sends all the syndrome bits, except s0 and s5 which are punctured. At
the decoder, for each syndrome bit not received, the c-nodes
connected to it are merged. Considering that 2-degree nodes represent
equality, it can be easily proved that the punctured syndromes can be
removed as long as their connected c-nodes are merged. At the light
of a coset interpretation, this represents the union of two cosets, since
there will be 2n-(k+1) cosets, each one with 2k+1 codewords.

Although this scheme is highly flexible in the choice of the c-nodes
to merge, to obtain a good performance for a wide range of code rates,
it is necessary to fulfill a certain constraint: the check-node degree
distribution of the base code and of the sub-codes must be as
concentrated as possible, i.e. all the c-nodes should have no more than
two different degrees and their degrees should be as similar as
possible. This result is well known in the LDPC channel coding
literature [9] and was confirmed in practice for LDPC syndrome
codes. A question then arises: Which structure should be used to
connect the syndrome nodes to the check nodes? The authors
experimented several types of graph structures for the syndrome
nodes, and the respective transmission orders (following the above
criterion), all of them reaching similar performance. Thus, a simple
structure, as shown in Figure 4, where each syndrome node is
connected to two adjacent c-nodes, was selected. As it can be noticed,
this structure corresponds to the accumulator used in the family of
repeat accumulate channel codes [10], which consist of a

concatenation of a set of repetition codes with one or more
accumulators and an interleaver; this was also employed in [2,3].

Figure 4 – LDPC syndrome based accumulator.

Once the syndrome nodes placement is defined, it is necessary to
define the order by which the check nodes are merged (step 2 above).
For the LDPC syndrome based accumulator, the transmission order is
defined within a puncturing period Δ, which determines the minimum
amount of rate spent in the first transmission, and the granularity of
code rates which are incrementally obtained. The proposed algorithm
to define the transmission order in Δ for the accumulator structure is
described in the following:
1. c = Δ, l = 1, send position c in each puncturing period.
2. Send the position c/2 + i×c with i = {0, …, l-1} in each puncturing

period.
3. l = l×2 and c = c/2.
4. If all positions in Δ have been sent, exit; otherwise, go back to 2.
The l, c and i are auxiliary variables to help in the calculation of each
position to be sent. This algorithm allows maintaining a concentrated
check node degree distribution, each time step 2 is executed.

3.2. Graph conditioning LDPC syndrome code

The performance of the LDPC codes depends on several factors, such
as the regularity nature of the graph; irregular LDPC codes can
achieve higher bit error rate efficiency [1,8]. An LDPC code is
irregular when the degree of the variable and check nodes is not
constant across the code. Another important factor is the length of the
cycles in the bipartite graph. Since the decoding algorithms, such as
the sum-product algorithm (SPA), can achieve optimal decoding only
in cycle-free graphs, it is natural to minimize the number of short
cycles in the design of the LDPC code. Thus, techniques that limit the
effect of cycles in the LDPC code performance, such as the graph
conditioning techniques proposed in [4,11], are also necessary when
the target is to design efficient LDPC codes for the DVC scenario.
3.2.1. LDPC code features
In order to design an efficient LDPC code when the novel check node
merging technique is used to obtain a rate-compatible strategy, it is
necessary to take into account the following features:
1. The base code must be designed to maintain a valid structure for

any sub-codes, i.e., no more than one edge can connect any c-
node/v-node pair. So, to guarantee valid graph structures for the
sub-codes, the base code must follow this rule: the c-nodes to merge
cannot have a common neighbor, i.e. the base code matrix cannot
have ones in the same column in the rows to sum.

2. The LDPC syndrome code can benefit if a graph conditioning
technique is applied to the base code. In [4], the concept of stopping
steps was proposed: a stopping set is a set of variable nodes which
has all its neighbors connected to the set at least twice. The
stopping sets impair the code performance when all v-nodes of the
set are affected by errors, causing a decoding failure. Thus, it is
proposed here to design an LDPC code base matrix (for rate = 1)
using the greedy search algorithm ACE (approximate cycle EMD)
[4] which increases the smallest stopping set size, to obtain better
performance for an iteratively decoded LDPC irregular code.

3. Simultaneously, it is also necessary to obtain good sub-codes that
result from the parity-check node merging. However, since for high
compression ratios the number of c-nodes is quite low and the
number of v-nodes and edges remain constant, it is difficult or even

impossible to apply the graph conditioning techniques for the sub-
codes. Therefore, a simpler option is to forbid certain types of
cycles that impair the LDPC code efficiency. So, inspired by the
relevant criteria in the literature [9], 4-length cycles that involve
only 2-degree v-nodes are forbidden.

4. Another important issue is the proper placement of the v-nodes. As
shown in [9,10], low-degree v-nodes are susceptible to errors,
because they converge slower than high degree v-nodes and can
affect the code efficiency when a significant amount are affected by
errors. However, their presence is necessary to have lower degree c-
nodes [9]. Considering that the low-degree v-nodes are the most
vulnerable ones in the code, they must be placed taking into
account the nature of the correlation noise in DVC, where the side
information estimation in certain regions fails due to erratic motion,
occlusions and/or illumination changes. So, quite often, error bursts
in the side information associated to noisy regions are present. To
improve the LDPC code capability to correct consecutive bit errors,
it is proposed to insert periodically the high degree v-nodes (wv >
3); this avoids that errors bursts only affect low degree v-nodes.
While feature 1 is due to the c-node merging technique, features 2-3

are applied for the first time to improve the performance of a LDPC
syndrome code (for high rates), because of the rate-compatible
strategy chosen. Finally, feature 4 takes into account the DVC virtual
channel statistics to improve the code rate performance.
3.2.2. LDPC code construction algorithm
Considering the above features, and given certain global distributions,
λ(x) and ρ(x), for the variable and check nodes degrees wc and wv,
respectively, the algorithm proposed here to create the irregular LDPC
base code with n×n size is the following:
1. Generate variable nodes, one by one, starting from the low-degree

v-nodes, according to the λ(x) and ρ(x) degree distributions, with
random connections (edges) to the c-nodes. The v-node is accepted
as valid if:
a. All v-node edges do not connect more than once to a c-node in

the base code and in the lowest rate sub-code. This guarantees
that no multi-edges exist, i.e. two or more edges connecting a c-
node to a v-node.

b. The ACE algorithm requirements are met, i.e., all the cycles of
length less than a specified threshold (dACE) have ACE values
less than ηACE; refer to [4] for more details.

c. There are no 4-length cycles involving only 2-degree v-nodes in
the lowest rate sub-code.

2. The previous step is repeated until the whole parity check matrix is
created.

3. Check if the parity check matrix is full rank (all the rows and
columns of H are linearly independent); otherwise, go to step 1.
This operation is needed to guarantee that the parity check matrix is
invertible in order to recover the original data, independently of the
amount of errors in the side information, for rate = 1.

4. In this last step, the placement of v-nodes (feature 4) is done. The
algorithm consists in two steps: i) shuffling of all v-nodes with
degree wv ≤ 3, ii) guarantee that each variable node with degree wv
> 3 is equally spaced with a period proportional to the total number
of v-nodes with wv > 3.
The major advantage of the proposed LDPC design is that the code

graph structure can be tailored for different code rates; in this case, it
was optimized for the lowest and highest compression ratios, but
different strategies can be applied according to the amount of
correlation noise between the side information and the original data.

4. EXPERIMENTAL RESULTS

The proposed LDPC code is here evaluated in the context of a well-

known WZ video codec which follows the Stanford architecture: the
DISCOVER codec [5]; since this is one of the state-of-the-art
solutions in terms of WZ video codecs, it will be used here for
comparison purposes. The two QCIF video sequences considered are:
Hall Monitor and Foreman at 15Hz. In all the experiments, only the
luminance data is considered for the RD performance evaluation. A
GOP length of 2 is used. The key frames are H.264/AVC Intra
encoded with quantization parameter values which allow having
almost constant decoded video quality for the full set of frames (key
frames and WZ frames). The test conditions for the DCT, quantizer,
frame interpolation, correlation noise modeling and reconstruction
modules are the same as in [5]. Regarding the Slepian-Wolf codec
module, three types of channel code solutions are evaluated:
i) Proposed LDPC code with node merging: This code was
constructed according to Section 3.2 with λ(x) = 0.131x + 0.26x2 +
0.187x6 + 0.115x7 + 0.08x18 + 0.227x20 and ρ(x) = 0.17x3 + 0.83x4;
these λ(x) and ρ(x) distributions obtained from [3]. A rate-compatible
strategy was achieved using the technique described in Section 3.1
(node merging). For the ACE algorithm, the pair (dACE, ηACE) = (13, 7)
was used.
ii) DISCOVER LDPC codec: A detailed description of the LDPC
code used in the DISCOVER codec is presented in [5] and maintains
the same edge degree distributions as i). The rate-compatible strategy
corresponds to the node splitting technique from [2,3].
iii) DISCOVER Turbo codec: It makes sense to compare the proposed
channel code solution with a turbo code based solution since turbo
codes also have a bit error rate performance close to the Shannon
limit. In this case, the DISCOVER turbo encoder encloses two rate ½
recursive systematic convolutional encoders and an interleaver; the
systematic bits produced by the turbo encoder are discarded while the
parity bits are stored in a buffer and sent upon decoder request. The
turbo decoder is composed by two soft-input soft-output decoders
implemented using the logarithmic maximum a posteriori (Log-MAP)
algorithm.

Note that both i) and ii) LDPC code solutions use the log-domain
SPA at the decoder and the inverse of H matrix is used to recover the
original data when the compression ratio is 1:1. To detect successful
decoding, the parity-check equations must all be satisfied and then an
8-bit Cyclic Redundancy Check (CRC) code is then used to detect
residual errors [5].

Table 1 shows for the Hall Monitor and Foreman sequences the WZ
rate savings ∆R, in terms of percentage, of the proposed LDPC code
with respect to the DISCOVER LDPC codec, ∆RLDPC, and
DISCOVER Turbo codec, ∆RTurbo; only the WZ rate is considered
since the key frames rate is the same for the three alternative channel
code solutions. In Table 1, Qi represents the i-th WZ quantization
matrix associated with the i-th RD point [5]; when Qi increases, the
bitrate and quality also increases. The rate and PSNR columns in
Table 1 correspond to the WZ RD performance obtained with the
LDPC code proposed in this paper; as expected, the same PSNR
values were obtained for the three alternative channel code solutions.

As it can be observed in Table 1, the proposed LDPC code with
node merging allows a maximum WZ rate reduction of 19.2% and
10.2% versus the turbo code solution, for the Hall Monitor and
Foreman sequences, respectively. When compared with the
DISCOVER LDPC codec, the proposed LDPC solution allows WZ
rate savings of up to 8% and 2.8%, for the Hall Monitor and Foreman
sequences, respectively. For video sequences with higher motion
content, like the Soccer sequence, the conclusions are similar to the
ones drawn for the Foreman. The higher WZ rate savings are obtained
for the Hall Monitor sequence because the proposed LDPC code
design has a higher efficiency when the correlation between the side
information and the original data is medium or high, i.e. for
medium/lower compression ratios. Since the turbo code solution is

parity bit based instead of syndrome based, the proposed LDPC code
allows a higher WZ rate saving over the turbo code solution, as shown
in [12] for the general DSC case. Moreover, when the correlation
between the original data and the side information is low, the
compression ratio in the turbo code solution can be higher than 1.

Table 1 – WZ rate saving (in %) of the proposed LDPC code
regarding DISCOVER Turbo code and DISCOVER LDPC code for

the Hall Monitor and Foreman sequences.

Qi
Hall Monitor

Rate [kbps] PSNR [dB] ∆RTurbo [%] ∆RLDPC [%]
1 9.77 31.53 17.0 6.5
4 24.53 34.39 19.2 8.0
6 39.10 35.94 18.4 7.5
8 81.79 40.53 14.3 4.4

Qi
Foreman

Rate [kbps] PSNR [dB] ∆RTurbo [%] ∆RLDPC [%]
1 22.36 28.35 10.2 2.2
4 60.70 31.90 8.6 2.8
6 93.53 33.16 9.8 2.0
8 211.75 38.65 9.8 1.2

5. FINAL REMARKS

In this paper, a novel LDPC code was designed and evaluated in the
context of the DVC scenario. The proposed rate-compatibility strategy
makes use of a node merging technique and, according to the
experimental results, leads to WZ rate savings up to 8% with respect
to the node splitting technique. As future work, it is planned to exploit
the memory that exists in the correlation noise between the original
data and the side information in the decoding process.

7. REFERENCES
[1] S.-Y. Chung, G. D. Forney, T.J. Richardson, R. Urbanke, “On the Design of
Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit”,
IEEE Commun. Lett., Vol. 5, No. 2, pp.58-60, Feb. 2001.
[2] J. Chen, A. Khisti, and D.M. Malioutov, “Distributed Source Coding Using
Serially-Concatenated-Accumulate Codes”, IEEE Information Theory
Workshop, San Antonio, TX, USA, Oct. 2004.
[3] D. Varodayan, A. Aaron, and B. Girod, “Rate-Adaptive Distributed Source
Coding using Low-Density Parity-Check Codes”, 39th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, USA, Oct./Nov. 2005.
[4] T. Tian, C.R. Jones, J.D. Villasenor, and R. D. Wesel, “Selective
Avoidance of Cycles in Irregular LDPC Code Construction”, IEEE Trans. on
Communications, Vol. 52, No. 8, pp. 1242-1247, Aug. 2004.
[5] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, M. Ouaret, “The
DISCOVER codec: Architecture, Techniques and Evaluation”, Picture Coding
Symposium, Lisbon, Portugal, Nov. 2007.
[6] A. D. Wyner, “Recent Results in Shannon Theory”, IEEE Trans. Inform.
Theory, Vol. IT-20, pp. 2-10, Jan. 1974.
[7] S. Pradhan and K. Ramchandran, “Distributed Source Coding using
Syndromes (DISCUS): Design and Construction”, IEEE DCC, Snowbird, UT,
USA, Mar. 1999.
[8] A.D. Liveris, Z. Xiong and C.N. Georghiades, “Compression of Binary
Sources with Side Information at the Decoder using LDPC Codes”, IEEE
Commun. Letters, Vol. 6, No. 10, Oct. 2002.
[9] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of Capacity-
Approaching Irregular Low-Density Parity-Check Codes”, IEEE Trans. Inform.
Theory, Vol. 47, No. 2, pp. 619-637, Feb. 2001.
[10] M. Yang, W.E. Ryan, Y. Li, “Design of Efficiently Encodable Moderate-
Length High-Rate Irregular LDPC Codes”, IEEE Trans. on Communications,
Vol. 52, No. 4, pp. 564-571, Apr. 2004.
[11] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, “Progressive Edge-Growth
Tanner Graphs”, IEEE GLOBECOM, San Antonio, TX, USA, Nov. 2001.
[12] A. Liveris, Z. Xiong, and C. Georghiades, “Distributed Compression of
Binary Sources using Conventional Parallel and Serial Concatenated
Convolutional Codes”, IEEE DCC, Snowbird, UT, USA, Mar. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

