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Abstract. Distributed video coding (DVC) is a new 
video coding paradigm based on two key Information 
Theory results: the Slepian-Wolf and Wyner-Ziv 
theorems. Recently, promising results were shown in 
Wyner-Ziv (WZ) video coding, a particular case of 
DVC. In the literature, many practical WZ coding 
approaches model the correlation noise between the 
original frame and the so-called side information by a 
given distribution whose relevant parameters are 
estimated offline, at the encoder. This paper proposes an 
algorithm to estimate, at the decoder, and at the frame 
level, the correlation or error distribution between the 
original and the side information frames, in a way which 
is as efficient as the estimation made at the encoder 
based on the original information. This approach relieves 
the encoder from the task to perform this estimation 
based on the original information, which is rather 
important since DVC solutions are typically adopted 
under low encoder complexity constraints. 
Keywords – Wyner-Ziv coding, distributed video 
coding, correlation noise model, frame level 

 
1. INTRODUCTION* 
 

Today’s digital video coding paradigm, 
represented by the standardization efforts of ITU-T 
VCEG and ISO/IEC MPEG, lies on hybrid DCT and 
interframe predictive coding. In this coding 
framework, the encoder is typically 5 to 10 times 
more complex than the decoder, mainly due to the 
motion estimation/compensation task. After all, it is 
the encoder that has to take all coding decisions, and 
is responsible to achieve the best rate-distortion (RD) 
performance, while the decoder remains a pure 
executer of the encoder “orders”. This kind of 
architecture is well-suited for applications where the 
video is encoded once and decoded many times, i.e. 
one-to-many topologies, such as broadcasting or 
video-on-demand, where the cost of the decoder is 
more critical than the cost of the encoder. 

                                                        
* The work presented was developed within VISNET, a 
Network of Excellence (http://www.visnet-noe.org), and 
DISCOVER, a Future Emerging Technology project 
(http://www.discoverdvc.org/) both funded by the 
European Commission. 

In recent years, with emerging applications such 
as wireless low-power surveillance, multimedia sensor 
networks, wireless PC cameras and mobile camera 
phones, the traditional video coding architecture is 
being challenged. These applications have very 
different requirements than those of the broadcast 
video delivery systems. For some applications, a low 
power consumption both at the encoder and decoder 
sides is essential, e.g. in mobile camera phones. In 
other types of applications, notably when there is a 
high number of encoders and only one decoder, e.g. 
surveillance, low cost encoder devices are necessary.  

Distributed video coding, a new video coding 
paradigm, fits well in these scenarios, since it enables 
to explore the video statistics, partially or totally, at 
the decoder; thus, DVC enables a flexible allocation 
of the complexity burden between the encoder and the 
decoder. From the Information Theory, the 
Slepian-Wolf theorem [1] states that it is possible to 
compress two statistically dependent signals, X and Y, 
in a distributed way (separate encoding, jointly 
decoding) using a rate similar to that used in a system 
where the signals are encoded and decoded together, 
i.e. like in traditional video coding schemes. The 
complement of Slepian-Wolf coding for lossy 
compression is Wyner-Ziv (WZ) coding [2]. WZ 
coding deals with the lossy source coding of an X 
sequence considering that a dependent sequence Y, 
known as side information, is only available at the 
decoder. The side information is usually interpreted as 
an attempt of the decoder to obtain an estimate of the 
original frame. 

One of the most interesting practical WZ 
approaches is the turbo-based pixel domain 
Wyner-Ziv coding scheme presented in [3], where all 
the source statistics are exploited at the decoder. In 
this solution, the decoder is the responsible to achieve 
compression following the Wyner-Ziv coding 
paradigm. The coding efficiency of Wyner-Ziv coding 
approaches depends critically on the capability to 
model the correlation noise between the original data 
and the side information generated at the decoder. 
Since the side information quality varies along time 
and the decoder does not have access to the original 
data, correlation noise statistics modeling at the 
decoder becomes a complex operation. 



 

Fig. 1. IST-PDWZ video codec architecture. 

In this paper, a new algorithm to estimate the 
correlation noise model based on temporal correlation 
information, in this case the motion compensated 
residual at the decoder, is proposed. This algorithm 
adaptively models the correlation noise distribution, at 
the decoder, at the frame level. 

This paper is organized as follows: Section 2 
presents a brief summary of the IST-PDWZ codec. In 
Section 3, a new approach to model the correlation 
noise statistics is described. Several experiments are 
performed, in Section 4, to evaluate and compare the 
coding efficiency of the proposed approach and, 
finally, in Section 5, conclusions and some future 
work topics are presented. 

 
2. The IST-Pixel Domain Wyner-Ziv Video 
(IST-PDWZ) Codec 
 

Figure 1 illustrates the architecture of the 
IST-PDWZ video codec proposed in [4]. Although 
this codec is based on the pixel domain Wyner-Ziv 
coding scheme proposed in [3], it includes major 
improvements, notably a more efficient side 
information (SI) creation solution at the decoder by 
using motion compensated frame interpolation with 
spatial motion smoothing (for more details consult 
[5]); the more accurate the side information is, the 
fewer are the Wyner-Ziv bits required to provide a 
reliable decoding of the Wyner-Ziv frame.  

In a nutshell, the overall coding process is as 
follows: the video frames are organized into key 
frames and Wyner-Ziv frames. The key frames are 
encoded with a conventional intraframe codec with a 
quality similar to the quality of the WZ frames. 
Wyner-Ziv frames are encoded pixel by pixel; the 

pixels are quantized using a 2M-level uniform scalar 
quantizer, generating the quantized symbol stream. 
Over the resulting quantized symbol stream bitplane 
extraction is performed and each bitplane is then 
independently turbo encoded. The turbo encoder 
encloses two recursive systematic convolutional 
(RSC) encoders of rate ½ and a pseudo-random 
interleaver. Each RSC encoder outputs the parity 
stream and the systematic stream. After turbo 
encoding a bitplane, the systematic part is discarded 
and the parity bits are stored in the buffer and 
transmitted in small amounts upon decoder request via 
the feedback channel.  

At the decoder, the frame interpolation module is 
used to generate the SI (side information) frame, an 
estimate of the WZ frame, based on previously 
decoded frames, XB and XF. For a Group Of Pictures 
(GOP) length of 2, XB and XF are the previous and the 
next temporally adjacent key frames. In this paper, 
longer GOP lengths, notably 4 and 8, are also 
considered; for these two GOP lengths, the SI frame is 
generated using both previously decoded key frames 
and WZ frames, according to the frame interpolation 
structure illustrated in Figure 2 for a GOP length of 4 
[6]. Thus, the SI frame corresponding to the WZ 
frame WZ2 is interpolated from the key frames K0 and 
K4, and so on. A similar frame interpolation structure 
is used for longer GOP lengths. 

 

Fig. 2. Frame interpolation structure for GOP length of 
4. 



The side information is then used by an iterative 
turbo decoder to obtain the decoded quantized symbol 
stream. The turbo decoder is constituted by two 
soft-input soft-output (SISO) decoders; each SISO 
decoder is implemented using the Maximum A 
Posteriori (MAP) algorithm. It is assumed the decoder 
has ideal error detection capabilities, i.e. the turbo 
decoder is able to measure in a perfect way the current 
bitplane error probability Pe. For example, if Pe > 
10−3, the decoder requests for more parity bits from 
the encoder via feedback channel; otherwise, the 
bitplane turbo decoding task is considered successful. 
The side information is also used in the reconstruction 
module, together with the decoded quantized symbol 
stream, to help in the WZ frame reconstruction task. 
The motion refinement module is used to improve the 
quality of the reconstructed image for a certain bitrate, 
i.e. after decoding an integer number of bitplanes. The 
refinement is performed with the help of the frames 
used to generate the side information and the motion 
vectors obtained by frame interpolation. As much as 
the authors know, this is among the best performing 
pixel domain WZ codec described in the literature, 
and was fully developed by the authors (including the 
turbo codec). 

 

3. Proposing a Decoder-Generated 
Correlation Noise Statistics Model 
 

In order to make good use of the side information 
(generated at the decoder by frame interpolation) in 
terms of coding efficiency, the decoder, notably the 
turbo decoder, needs to have reliable information on 
the statistical relation between the SI frame and the 
original frame. The statistical dependency between 
these two frames corresponds to a virtual channel (see 
Figure 1) with an error pattern characterized by some 
statistical distribution since the side information may 
be seen as a ‘corrupted’ version of the original 
information.  

In previous works, e.g. [4], [5], the authors used 
a Laplacian distribution as in (1) to model the 
statistical correlation between the original frame and 
the side information; this Laplacian distribution is 
used to convert the side information (pixel values) 
into soft-input information needed for turbo decoding. 
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Fig. 3. Residual distribution for the Foreman QCIF video 
sequence. 

Figure 3 depicts the actual distribution of the 
residual (WZ–SI), i.e. the luminance difference 
between corresponding pixels in the WZ frame and 
the side information frame for the Foreman QCIF 
video sequence. A Laplacian distribution given by (1) 
is also plotted in Figure 3, with the parameter α equal 
to 0.58. As it can be noticed, the Laplacian 
distribution is a good approximation of the residual 
(WZ – SI) distribution  

In previous works, the Laplacian distribution 
parameter α, given by 

2
2
2α
σ

=  (2) 

has been computed offline, at the encoder, i.e. before 
the WZ coding procedure starts, over the whole video 
sequence and kept constant for the decoding of all WZ 
frames, after transmission to the decoder. 

In (2), the parameter σ2 represents the variance 
between the original WZ frame and the SI frame. This 
process is not acceptable and efficient because it 
requires the encoder to recreate the side information 
(while WZ encoders should be of low complexity), 
and does not exploit the variability of the correlation 
model along time. 

The main novelty of this paper resides in the 
dynamic variation of the Laplacian distribution 
parameter α at the frame level, after estimation at the 
decoder; the α value at the frame level is then used to 
obtain the soft-input information needed by the turbo 
decoder. The proposed α estimation algorithm is 
performed at the decoder, where more computational 
resources are available according to the WZ coding 
paradigm. Moreover these parameters do not have to 
be transmitted from the encoder to the decoder, 
typically under error prone conditions. This is an 
important departure from previous work in the 
literature which leads to a more practical Wyner-Ziv  
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Coastguard  QCIF @ 30 fps
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Fig. 4. IST-PDWZ RD performance for the Foreman 
QCIF sequence considering GOP lengths of 2, 4 and 8. 

Fig. 5. IST-PDWZ RD performance for the Coastguard 
QCIF sequence considering GOP lengths of 2, 4 and 8. 

video coding solution since it is no more necessary to 
recreate the side information at the encoder side. 

The novel estimation approach proposed here 
makes use of XB and XF (where XB and XF can be 
previously decoded key frames or WZ frames, 
according to the GOP length – see Section 2) to obtain 
the α parameter estimate. Assuming linear motion 
between XB and XF, and that the interpolated frame is 
temporally equally spaced from XB and XF, the pixel 
values of both frames contribute with a ½ weight to 
the SI interpolated pixels. SI is thus given by (3), 
where XB (x + dxb, y + dyb) and XF (x + dxf, y + dyf) 
represent the backward and the forward motion 
compensated frames, respectively, and (x, y) 
corresponds to the pixel location in the SI frame; (dxb, 
dyb) and (dxf, dyf) represent the motion vectors for XB 
and XF, respectively. 

( ) ( )

( )

1, ,
2
1 ,
2

B b b

F f f

SI x y X x dx y dy

X x dx y dy

= + +

+ + +

 (3) 

In order to estimate the Laplacian distribution 
parameter α at the decoder, it is necessary to define a 
variable which somehow expresses the variance σ2 
between the original and the side information, since 
the original information is not available at the 
decoder. 

By computing an weighted mean squared error 
(WMSE) between XB and XF motion compensated, as 
described in (4), a confidence measure in the SI 
generation procedure is obtained; this confidence 
measure indicates how good the frame interpolation 
outcome is, i.e. how close the side information is to 
the corresponding original frame. When the motion 

compensated residual between XB and XF is high, it 
means that the interpolated frame presents a 
significant amount of errors when compared to the 
original frame, and thus a wide variance σ2 should be 
considered in (2); on the other hand, small motion 
compensated residuals means a successful frame 
interpolation and a narrow variance is expected in (2).  

In (4), the weight ½ indicates that both XB and XF 
frames contribute with a ½ weight to the SI 
interpolated values and L stands for the frame size (L 
= N×M). The WMSE metric given by (4) can 
therefore be used to represent the variance σ2 between 
the original information and the side information. 
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The α estimate for each WZ frame is thus 
obtained from (2) substituting σ2 by the WMSE value 
calculated from (4). 

 

4. Experimental Results 
 

Figure 4 and Figure 5 show the IST-PDWZ RD 
results for the first 101 frames of the Foreman and 
Coastguard QCIF video sequences at 30 frames per 
second (fps). GOP lengths of 2, 4 and 8 have been 
used. Three configurations are considered in terms of 
the statistical modeling of the correlation noise: 

i) True average α: this is the average in time of 
the α parameter computed offline, at the encoder, 
based on the residual histogram between the original 



information and the corresponding side information; 
this α value is kept constant for the decoding of all 
WZ frames; 

ii) True α: As above but now an α parameter is 
used for each WZ frame (it is called true α value 
because original WZ frames are used);  

iii) Decoder α: The α parameter is obtained by 
the estimation algorithm proposed in this paper with 
the advantages already mentioned. 

The test conditions for the frame interpolation 
and motion refinement modules are [4]: 

– Frame interpolation: 8×8 block size, ±8 
pixels for the search range of the full block 
motion estimation, and ±2 pixels for the search 
range of the bi-directional motion estimation. 

– Motion refinement: Block size remains 
unchanged; the threshold to determinate if the 
block is motion compensated or not is an 
average difference of 0.15 per pixel and the 
search range is ±4 pixels. 

The key frames are encoded with H.263+ intra with a 
quantization parameter (QP) equal to 13, 10, 8, 5, 
respectively, depending on the number of decoded 
Wyner-Ziv bitplanes; using these QP values for the 
key frames allows to have almost constant decoded 
video quality for the full set of frames (key frames and 
WZ frames). 

As can be noticed in Figure 4 and Figure 5, the 
true α allows achieving better RD performance when 
compared to the performance of the true average α, 
mainly for GOP lengths longer than 2. Notice that the 
temporal spacing between the frames XB and XF used 
to interpolate the SI frame varies according to the 
position of the SI frame within the GOP (see Figure 
2). This implies the SI frames within a GOP will have 
more or less interpolation errors depending on the 
temporal spacing between XB and XF; a large temporal 
spacing means that the frame interpolation fails more 
often and thus the quality of the side information 
decreases. This variation of the SI frame quality 
within the GOP explains why performing a more 
dynamic adaptation of the α value brings a better RD 
performance. 

The α estimation algorithm proposed here 
presents some coding efficiency loss regarding the 
true α, mostly for GOP lengths longer than 2. The loss 
in the RD performance is mainly due to the fact that 
the original frames are not available at the decoder. 
The coding efficiency loss increases for longer GOPs, 
since some SI frames will accumulate motion 
interpolation errors (cases where XB and XF also result 
from frame interpolation and thus have interpolation 
errors associated to them) and this is not well modeled 
by the decoder α estimation algorithm. However the 
method proposed here corresponds to a more realistic 

WZ video coding scenario. 
As shown in Figure 4, the IST-PDWZ RD 

performance is above the H.263+ intra coding for the 
first 101 frames of the Foreman sequence; this 
conclusion is independent of the configurations used 
in terms of the statistical modeling of the correlation 
noise. For long GOP lengths (e.g. 8), and for the 
Coastguard sequence, the IST-PDWZ codec presents 
a penalty in the coding efficiency when compared to 
the H.263+ Intra (Figure 5); this is mainly due to the 
high motion (i.e. the pan-left) that occurs in the 
Coastguard sequence. When high motion occurs in a 
sequence and long GOP lengths are used, the motion 
interpolation task is quite difficult. In this case, a 
small search range of ±8 pixels is not sufficient to 
capture such amount of motion and thus a high search 
range should be used. However, using a high search 
range, the frame interpolation fails more often when 
the amount of motion is low. Thus, a trade-off 
between the search range and the amount of motion to 
be captured must be defined. 

 

5. Final Remarks 
 

The main contribution of this paper is to present 
a novel, simple algorithm to estimate at the decoder, 
and at frame level, the error distribution between the 
SI and the original frame for the IST-PDWZ codec. 
The results obtained with this simple algorithm show 
a RD performance close to the one obtained with the 
true α value per frame computed offline using the 
original WZ data. As future work, it is planned to 
further enhance the RD performance by combining 
temporal correlation information with spatial 
coherence analysis of the side information frame, at 
different granularity levels, i.e. block and pixel. The 
combination of temporal and spatial information 
would enable to achieve a more accurate estimate of 
the correlation noise statistics model. 
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