Error Resilience and Concealment Performance for

 MPEG-4 Frame-Based Video Coding

Luis Ducla Soares, Fernando Pereira

Table of Contents

11.
Introduction

2.
Maximizing the Video Subjective Impact in the Presence of Errors
2
3
. Content-Based Error Resilient Source Coding
4
4.
Content-Based Channel Coding and Decoding
6
5.
Content-Based Error Concealment
7
5.1 Error Detection Techniques
8
5.2 Error Localization Techniques
9
5.3 Error Concealment Techniques
10
5.4 Post-processing Techniques
12
6.
Video Error Resilience in MPEG-4
13
6.1 The Error Resilient Coding Modes
14
6.2 The Combined Mode with Data Partitioning Syntax
15
7.
Conditions and Results
16
7.1 Results for Error Localization
17
7.2 Results for Error Concealment
22
7.3 Results for Post-Processing
25
8.
Final Remarks
26
Acknowledgments
29
References
29

Error Resilience and Concealment Performance for

 MPEG-4 Frame-Based Video Coding
Luis Ducla Soares, Fernando Pereira

Instituto Superior Técnico - Instituto de Telecomunicações

Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

lds@lx.it.pt, fp@lx.it.pt
1.
Introduction
In the last few years, more and more sophisticated digital video communication services and devices emerged in the market, such as videotelephone, videoconference and digital television, as a consequence of the impressive development of digital technology associated to telecommunications and computers. Although the mentioned services use digital technology, the visual information models used are the same as in available analog services, i.e. a sequence of rectangular images formed by a certain number of pixels. These services where visual information is represented by a sequence of images encoded by exploring their statistical properties, use the widely spread, so-called, “frame-based standards”, notably H.261, H.263, MPEG-1, and MPEG-2. With the increasing development of digital technology and the fast evolution of information representation techniques, both in terms of hardware and software, some technological convergence is happening between the Telecommunications, Information Technology (IT) and Entertainment sectors in the sense that a clear boundary between the corresponding service models no longer exists (1(. This convergence shows up through the appearance in each of the above fields of elements that used to characterize the others. Among the new elements, new functionalities such as end-user content-based interactivity, integration of synthetic and natural data, and universal audiovisual access play a major role.

In order that the above described moving landscape does not lead to many incompatible solutions for the same problems, driven by the various sectors now crossing borders, it is important that appropriate and timely standardization initiatives are taken. This is the framework and motivation for the emerging MPEG-4 standard, being developed within ISO WG11, well known as MPEG. This standard wants to address the problem of representing audiovisual information in the convergence context mentioned above and thus considering the requirements of various business sectors (1(. The new standard uses a coding architecture based on the understanding of an audiovisual scene as a composition of (semantically) relevant objects - the content. As a consequence, object-based video coding schemes can also be called content-based video coding schemes. This approach shall allow new and improved functionalities in terms of interactivity, coding efficiency and universal access since, for the first time, the content is not only selectively processed but also independently accessible.

Universal access means here that “audiovisual information shall be accessible from anywhere in anyway”. The universal access requirement is a consequence of the growing variety of networks used, including the mobile ones, nowadays more and more important. Since it is well known that some of these networks have critical bandwidth and channel error characteristics, which have to be taken into account, a strong pressure is being made towards the study of new error protection, detection and concealment techniques as an essential part of the emerging object-based video coding architectures. Object-based scalability is another type of technology playing an important role in the provision of universal access since it allows to accommodate different transmission speeds as well as decoding on processors with varying processing power by just sending to each receiver the most adequate information, in terms of content (more or less objects), SNR, or spatial/temporal resolution.

In the context of the MPEG-4 video coding framework, each scene is structured as a composition of arbitrarily shaped 2D objects - Video Objects (VOs) - coded using separate elementary bitstreams (one per object) and an additional one for the composition information. For each object, shape, texture and motion information is coded. While shape coding is for the first time considered in the context of a video coding standard, motion and texture coding have been done for quite a long time in the available standards using hybrid coding schemes - DCT and motion compensation. Since this new standard is considering the scene to be composed of various objects, the semantically meaningful objects may be not only independently coded but also independently and differently protected. This means that the concept of Video Object (VO) can also be considered and explored for error resilience purposes.

This paper addresses error resilience and concealment in the context of content-based video coding schemes, such as the new MPEG-4 video coding standard. The first part of the paper studies, organizes and classifies the most important error resilience tools available in the literature using three classes, notably: error resilient source coding, channel coding and decoding, and error concealment. In the second part, the performance of the MPEG-4 error resilient frame-based syntax, such as described in the MPEG-4 Visual Committee Draft (CD), from October 1997 (2(, is studied, using meaningful test conditions. This is a very relevant case in terms of MPEG-4 since it corresponds to the MPEG-4 Natural Video Simple Profile, addressing mobile communications (no arbitrarily shaped objects are supported). Since the error resilient shape-based video syntax has been defined much later, due to the need to define first the type of shape coding to be used, performance results should be available later.

2.
Maximizing the Video Subjective Impact in the Presence of Errors

One of the main objectives of all video communication systems is to maximize the subjective impact of the decoded video, shown at the receiver. This objective may have to be reached simultaneously with other objectives, e.g. providing content-based interactivity by means of independently coded objects, and thus a compromise has to be looked for. In the context of content-based video coding, the subjective impact is not only related to the texture quality but also to the shape quality. Depending on the applications, the objects may be pre-segmented and then composed, or (real-time or off-line) segmented from a sequence of frames, which implies different artifacts and problems, if lossy shape coding is to be used or if user manipulation of the data is possible. The same applies if errors occur and some shape concealment has to be made.

In any real communication, whether the data is being stored or transmitted, errors are most of the times inevitable and, therefore, so are error-control techniques. Moreover, in the case of a video communication, the data is usually in a compressed format with a high compression ratio and reduced redundancy. This means that the coded video signal is even more vulnerable to errors than its uncompressed format and, thus, an error will affect a larger portion of the original information. In error prone conditions, both the sending and receiving terminals have to “work” for the maximization of the subjective impact of the decoded material, in other words for the minimization of the negative impact of the (transmission or storage) media errors. The techniques used for the maximization of the subjective impact in the presence of errors have the main target of minimizing the negative impact of errors, which means bringing the subjective quality as close as possible to the subjective quality reachable if no errors were present.

In order to develop error resilient tools that minimize the negative subjective impact of the errors, a good subjective metric should be used. Although the human user is generally considered as the best subjective quality measurement system, the subjective quality of a video sequence is many times measured in terms of the signal to noise ratio, e.g. PSNR. This objective metric is undoubtedly simple to compute but it is unfortunately not adequate for many situations, and for sure even less adequate when error corrupted video sequences are being evaluated. For instance, a certain decoded sequence can have a high PSNR and a very negative subjective impact or vice-versa. On the other hand, the PSNR can increase indefinitely although the subjective impact is a limited function and thus cannot go beyond a certain limit. In conclusion, this metric does not perfectly reflect the behavior of the Human Visual System (HVS) and other measures that try to match the behavior of the HVS have been tested. For example, the Motion Picture Quality Metric (MPQM) (3(has been tested with (non-corrupted) MPEG-2 material and has produced very promising results, in the sense that the corresponding subjective assessment was very well matched. Similar tests could be done for corrupted data but unfortunately there is not much experience in terms of subjective testing with error corrupted data, which can be a very time-consuming procedure and does not easily fit into the busy schedule of MPEG. This explains why the PSNR measure is still being used within MPEG to evaluate the different error resilient tools [4]. However, being aware that this evaluation measure has serious limitations, MPEG does perform subjective tests for competitive (5(and verification purposes (6(. In fact, the first large scale set of tests with corrupted data was performed during the MPEG-4 video tests, in November 1995 (5(. For the error resilience video verification tests to be performed before July 1998, MPEG-4 adopted a new subjective testing method, called Double Stimulus Continuous Quality Evaluation (DSCQE), aiming at checking the fidelity of the corrupted sequence versus the corresponding non-corrupted ones (7(. The authors of this paper are involved in these verification tests and results will be published when available.

The maximization of the video subjective impact in the presence of errors or the minimization of the negative impact of the errors may be reached by means of three main types of techniques:

· Content-based error resilient source coding – These techniques deal with the conversion of the available video information into a suitable (according to the application requirements), efficient, and resilient digital representation. By choosing a more error resilient representation, usually at the expense of some compression efficiency, the negative subjective impact of errors can be minimized.

· Content-based channel coding and decoding – These techniques involve the systematic insertion of extra (redundant) bits to the bitstream. These bits convey no source information by themselves, but make it possible to detect and correct errors in the bitstream. Channel coding and decoding usually work a layer above source coding and decoding and these processes can, most of the times, be seen as serial and independent. However, it is largely recognized that joint source-channel coding may bring significant improvements in subjective quality. This means, for example, that different coded data, e.g. shape, motion vectors or DCT coefficients, can be differently protected (in terms of channel coding) since their error sensitivity is different.

· Content-based error concealment – These techniques cope with the errors introduced by the channel, but not corrected by the channel decoding process. They process and exploit the available decoded information, both correct and erroneous, with the target of minimizing the video negative impact at the receiver. This type of techniques is usually not subject to standardization.

The techniques above mentioned can be independently used and, typically, a good error resilient solution implies the simultaneous and balanced use of the three types of techniques, depending on the error characteristics, available bandwidth, computational resources, etc. Two major error resilience coding principles are highlighted by the techniques referred, notably:

· Essential role of the encoder - The encoder terminal has a main role on how much error concealment can be done at the receiving terminal since this type of processing has to rely on the received data. The more careful the encoder is with error resilience, the easier the task of the decoder will be. Depending on the applications, the encoder may introduce error resilience based on certain pre-fixed rules or be asked by the receiver to perform actions to prevent or solve error related problems.

· Intelligence of the receiver terminal - The decoder may use and process the available decoded data (both correct and erred) in a more or less clever way. This means that the same corrupted bitstream may result in decoded and concealed video sequences with very different subjective impacts.

In the following sections, the techniques presented above will be studied with more detail.

3
.
Content-Based Error Resilient Source Coding

Even when channel coding protection is used (or to decrease its weight), it is wise to start thinking about error protection at the source coding level, since the source encoder has the big advantage of knowing about the data involved as well as about its different sensitivity to errors. This means that source coding is the perfect place to introduce error resilience in a bitstream, with a fine granularity, depending on the different data sensitivity, and on each object relevance/priority. Similar objectives may be reached with channel coding, although usually with less flexibility.

The increasing of error resilience for a certain object, at the source coding stage, may be reached by means of four different approaches. These techniques have a cost in terms of coding efficiency, depending on the amount of resilience introduced.

· Reducing the exploitation of video redundancy - The original video data has usually a very high degree of spatial and temporal redundancy. In order to transmit or store the video material in an efficient way, this redundancy has to be reduced as much as possible. However, redundancy reduction has a price to pay as far as error resilience is concerned, since the entropy value of each bit is higher and thus the video signal becomes more vulnerable to errors. This also usually means that an error in the bitstream will affect a larger portion of the decoded information. To improve the error robustness of the coded video signal, a possible technique is to exploit less effectively the redundancy of the original signal. This can be made in a selective way, also within an object, if some parts are considered more critical or subjectively more important than others. One simple way of applying this technique is by decreasing the use of differential coding, e.g. by avoiding differential shape coding or by periodically intra-refreshing all or just the more important macroblocks in an object. In this way, error propagation can be controlled.

· Using a more resilient prediction model – By using temporal prediction, high compression gains can be obtained, since typical video sequences have a lot of temporal redundancy. However, if an error occurs in a macroblock that is used for prediction, the error will propagate until the affected area is intra-refreshed or predicted from non-erred parts of the image. In order to avoid the long propagation of errors, a more resilient prediction model can be used. Examples of this solution are the Overlapped Block Motion Compensation (OBMC), used in the H.263 standard, where each pixel’s prediction is a weighted sum of predictions using different motion vectors, and leaky-difference schemes where the prediction is weighted with a smaller than one factor, making the dependency on past pixel values disappear after a certain number of frames (8(.

· Increasing the amount of synchronization data – One problem that results from the use of entropy coding (that strongly improves coding efficiency) is the possible loss of word synchronization when errors occur. Synchronization will be recovered at the price of introducing resynchronization markers. Since the longer the decoder is out of synchronization, the more data will be lost, the “out of synchronization” time needs to be minimized in order to minimize the data lost. To deal with this problem, the amount of synchronization data in the bitstream has to be increased, possibly depending on the data currently being coded. This means that by wisely choosing the spacing between resynchronization markers, as well as the marker length, it is possible to protect better the subjectively more important information. One possible way of doing this is by placing the resynchronization markers periodically, after a certain number of macroblocks (or any spatial entities). However, with this type of spacing the information will be very unevenly protected since macroblocks may use a very different number of bits. A better way of doing it is by choosing the inter-marker spacing based on the number of bits used, independently of the number of macroblocks that they correspond to. Special markers may also be introduced before very important data types, e.g. shape or motion markers, to assure that synchronization is present or recovered before this data is decoded. The markers to be used should be different from any possible combination of valid words in order to avoid unexpected emulations of the markers. However, if a greater resilience of the marker is needed, then a Hamming distance higher than 1 should be used. This will allow the markers to take some errors and still be recognized as a marker with the number of errors allowed depending on the Hamming distance between the marker and any possible combination of valid words.

· Using error resilient entropy coding – Entropy coding is a very powerful way to achieve high compression gains. However, since there are no fixed length codewords, an error in the bitstream may have a disastrous effect since, most of the times, synchronization will be lost. One possible way to solve this problem is by designing a more error resilient type of entropy coding. A technique that may improve the error resilience at the entropy coding stage is the use of Reversible Variable Length Codes (RVLC). These codes can be decoded, both from left to right and vice-versa. With RVLC, if an error occurs, all the data up to the next marker can be skipped and then decoded backwards. This helps to locate the errors as well as to minimize the amount of lost information and the negative impact due to the errors (ideally one single macroblock is affected).

While the first three techniques do not require the decoder to do any special processing, in the sense that the same decoding procedure used for the error free case would still work, the exploitation of the last technique requires the decoder to specially process (forward and backward) the received information. Moreover while the first two techniques increase the bitstream error resilience capabilities by reducing the dependencies in time and space, the third and forth techniques have the main objectives of reducing the resynchronization time (and thus the amount of data erred), and of improving the decoder error localization capabilities, respectively.

4.
Content-Based Channel Coding and Decoding

Since the reduction of redundancy performed by the source encoder increases the video data error sensitivity, reintroducing some redundancy, in a controlled manner, may increase its robustness. One possible, and very common, way to do this is by using channel coding. If channel coding is done in a completely independent way from source coding, then it cannot take into account the different sensitivity of the information being protected, which is clearly a limitation. If the channel encoder “sees more than just bits”, and “knows what is behind the bits”, the domain of joint source-channel coding is entered. The channel and source coding budget has to be carefully decided based on the type of bitrate resources, e.g. constant or variable, on its statistical characterization, and on the channel error behavior. Since object-based video representation schemes are considered here, the various objects in the scene will be represented in a fully independent way, and may have different (semantic) priorities. And thus, a hierarchy based on object priorities can be established in a given scene, leading, if desired, to different degrees of channel coding protection (QoS).

While all channel coding techniques ask for bitrate resources that most service providers would like to use in a different way (and these resources may be substantial, e.g. for mobile environments), they differ in the possible error recovering actions. Some techniques are designed to allow error detection, and others offer also error correction capabilities, which may be essential for some applications (notably real-time). If channel coding is to be used, the type of coding has to be decided. There are basically two classes of channel coding techniques that can be used:

· Automatic Repeat Request (ARQ) - ARQ schemes are based on the introduction of redundancy in the bitstream with the only purpose of allowing the decoder to detect errors, not to correct them. When an error occurs, the decoder signals the encoder that an error was detected and, possibly, where; for this, a back-channel is needed. The encoder’s reaction differs, depending on the type of ARQ technique used, notably:

· ARQ-type I - The encoder resends to the decoder the erroneously received packet. This scheme can guarantee a very good quality but the real-time requirements are difficult to fulfill and, therefore, it is typically not usable in real-time communications, if the round-trip delay is very large.

· ARQ-type II - The encoder sends to the decoder some extra (redundant) data that should allow the decoder to recover from the errors. The size of the redundant data to be transmitted has to be carefully designed, taking into account the desired capabilities in terms of error correction.

· Forward Error Correction (FEC) – With FEC schemes, the encoder (always) adds redundant data to the bitstream. This technique allows the decoder to correct errors occurring in the bitstream, without re-transmitting any data. Although numerous FEC schemes exist, they can be classified in two main types:

· Block codes - When using block codes, the channel encoder accepts information in successive k-bit blocks and for each k bits generates a block with n bits, where n (k. For instance, Bose-Chaudhuri-Hocquenghem (BCH) codes are recommended both in H.261 and H.263 standards (9,10(.

· Convolutional codes – If a convolutional code is used, the encoder accepts the information as a continuous stream and generates a continuous stream of encoded bits at a higher rate. This type of codes is extensively used in mobile environments (11(. In Recommendation H.223/A (12(, “Multiplexing Protocol for Low Bitrate Mobile Multimedia Communication”, a Rate Compatible Punctured Convolutional (RCPC) code is recommended.

In addition to these techniques, others can be used like interleaving and error framing. The idea of interleaving is to scramble the bitstream, guaranteeing that the successive bits transmitted are widely separated in the data to be decoded. In practice, this means that burst errors in the bitstream will be transformed into more evenly distributed errors in the data to be decoded and, thus, more easily dealt with by the channel decoders. This technique, used in conjunction with channel coding, is very powerful and widely used in mobile environments such as GSM (11(. However, if channel decoding is not used, interleaving would be prejudicial, since uniformly distributed errors are much worse than burst errors, for the same average bit error rate (BER), in the case of VLC coding (13(. This happens because, instead of having one packet with many errors, a lot of packets will have few errors, which is disastrous when variable length coding is used.

As for the framing technique, a framing bit is inserted in each frame or packet with the constraint of giving a specific pattern to the framing bits in a sequence of packets. If, at the receiver, the pattern is not the one expected, something must have gone wrong, such as the occurrence of an error in the framing bits, or the loss of synchronization. Framing can be very useful to check that packet synchronization is not lost even if word synchronization is lost. Both the H.261 and the H.263 standards use a fixed-length framing technique (9,10(.

In terms of this paper, channel coding provides two capabilities, error detection and error correction, and it is applied to each (object) elementary stream. While error correction gives an end to the problems since the correct data is recovered, error detection just provides very useful information for the next stage: error concealment.

5.
Content-Based Error Concealment

Error concealment includes all the techniques that may allow the receiving terminal to minimize the negative subjective impact of errors. When content-based coding is used, content-based concealment is applied in the sense that each object (corresponding to an independent elementary bitstream) is error concealed using only its own data. These techniques may include more or less interaction with the encoder, although for unidirectional systems and, most of the times, for real-time communications this interaction does not exist. Since concealment techniques involve the “creative playing” with the corrupted and correct decoded data, they are not subject to standardization and remain as one of the areas, within the standards, for industry competition.

In order to have efficient error concealment, the decoder usually goes through three different steps. First of all, the decoder has to know that an error occurred. Then it has to know (in the most precise possible way) where it happened and, finally, it will try to dissimulate - conceal - it. In conclusion, error concealment can be divided into the following three stages, detailed below:

· Error detection techniques – All the techniques that allow the decoder to know that an error occurred.

· Error localization techniques – With these techniques, the decoder tries to find, with the best possible precision, where the detected error occurred.

· Error concealment techniques – Finally, by using different dissimulation techniques, the decoder tries to decrease the negative subjective impact of the errors that could not be corrected (by channel decoding).

5.1 Error Detection Techniques

The first step in error concealment is the detection of the errors. While the detection of errors may ease its concealment, non-detected errors may also be concealed, e.g. by post-processing of the decoded images (see section 5.4). Since most of the information is encoded with Variable Length Coding (VLC), usually either Huffman or arithmetic encoding, when an error occurs, synchronization is, almost always, lost and errors can propagate for a long time. Therefore, it is important to detect errors as soon as possible. The error detection techniques can be grouped according to the following three types:

· Channel decoding – Includes the channel coding techniques with error detection capabilities. In terms of concealment, only the errors detected but not corrected are relevant. For example, channel coding can be applied to packets of a certain length, allowing the decoder to know which packets have errors. The first localization of errors is usually poor in precision. Some examples of channel coding schemes have been given in the section dedicated to this topic.

· Syntactic inconsistency - The detection of errors results from the occurrence of syntactic inconsistencies in the bitstream. For Huffman coding, the simplest syntactic inconsistency is the appearance of an “impossible” word; this means that, in the decoding process, a word that cannot be the beginning of any valid word occurs. This will only happen if incomplete VLC tables are used, making some words illegal at the cost of some compression efficiency. The more incomplete the table is, the better the error detection capability and the worse the coding efficiency will be. Another case of syntactic inconsistency is the unexpected appearance of a marker in the middle of data, meaning either that an error occurred in the data and the decoder continued up to the marker without detecting it, or that an error occurred and the marker was emulated. A similar syntactic inconsistency is the absence of a marker where expected (e.g. at the end of a block of data).

· Semantic inconsistency - The detection of errors results from the occurrence of semantic inconsistencies in the bitstream. Examples of semantic inconsistencies are the decoding of a DCT coefficient with order higher than 64 in an 8x8 DCT context, or the detection that the current running macroblock count is different from the one indicated after a resynchronization marker.

To improve the error detection capabilities, several techniques shall be used simultaneously. After a certain type of error has been detected, the decoder has to take important decisions such as where to resynchronize and which error localization techniques to apply (e.g. if no Reversible VLC codes were used no RVLC processing can be made).

5.2 Error Localization Techniques

The best possible localization of errors is essential for their concealment since the better the error localization, the smaller the amount of correct data discarded. Unfortunately most of the error detection techniques are very imprecise in terms of error localization: while channel decoding usually gives an indication of error for a block of data, syntactic and semantic inconsistency detection give an indication of error for a bit or a codeword but typically much after the error effectively happened (depending on the degree of completeness of the code). In order to improve the error localization precision, based on an error detection indication, three types of techniques may be used:

· Exploitation of error resilient entropy coding - Reversible VLC (RVLC) codes are used to further localize the errors. If RVLC codes are being used, and an error occurs, all the data up to the next marker is skipped and then a backward decoding process is started. This helps to better locate the occurrence of the error, minimizing the information discarded (ideally one single macroblock in macroblock-based schemes), and thus the negative impact of the errors.

· Improved error localization by texture post-processing – Since errors are many times detected much after they occur, some corrupted texture data is (correctly) decoded, leading sometimes to very strange and visible image artifacts, such as light green 8x8 blocks aligned with the 8x8 DCT block grid in a dark background. These errors may be detected, improving error localization, by means of post-processing techniques. For example, for DCT-based coding schemes, it is possible to improve the localization of a detected error by neighborhood continuity processing. This means looking for strong image discontinuities aligned with the DCT coding grid, starting by the last decoded image area (e.g. a macroblock), and supposing that it is highly unlikely that strong (usually very colorful) image edges coincide with the coding grid. The blocks fulfilling certain discontinuity criteria will be considered as corrupted, and the position of the error correspondingly moved backwards (in terms of the decoding direction). Another way of detecting errors by texture post-processing is by accepting some constraints, e.g. in terms of color saturation. For instance, in a videotelephone application, it is reasonable to assume that 8x8 blocks with highly saturated colors (e.g. pink) are unlikely, and hence can also be considered erroneous. However criteria that might be reasonable for one application may not be for another. For example, 8x8 blocks with saturated colors might exist in an application including synthetic video content. These techniques can be switched off if desired since they always involved a (very low) probability of detecting as erred, correct data.

· Improved error localization by shape post-processing – Such as it happens for texture, also some corrupted shape data may be decoded and may lead, in principle, to evident shape artifacts. For shape, it is difficult to define in a simple and generic way what is an artifact, but this may be possible in the context of specific applications. If, for example, it is known that shapes are smooth without sharp edges, shape errors may be detected if this condition is not verified.

In order to reach the best error localization results, several error localization techniques shall be used simultaneously. In some cases, a very simple solution is adopted, just assuming that the error happened N bits or macroblocks before, where N is determined based on extensive experimentation for the relevant conditions.

5.3 Error Concealment Techniques

After the errors are detected and as much as possible precisely localized, it is time to start concealment, which basically means to hide their effects. This process may typically involve two different approaches:

· Stand alone decoder error concealment – The decoder tries, by itself, to minimize the negative impact of the errors in the decoded images just by using the available decoded data (shape, motion and texture) and making sensible assumptions.

· Back-channeling concealment - If a back-channel is available, the decoder may want to minimize the negative impact of the errors by asking the encoder for help in this process.

These two types of error concealment techniques may be used simultaneously.

5.3.1 Stand alone decoder error concealment

Stand alone decoder error concealment techniques are usually applied when there are no conditions for the decoder to ask the encoder for help, such as in broadcasting environments where no back-channel usually exists or in simple real-time communication systems where no back-channel error concealment requests are foreseen. Among the possible stand alone decoder error concealment techniques there are:

· Lost data from previous image - In the current image (frame or arbitrarily shaped 2D object), the lost data (texture or shape) due to errors is made equal to the corresponding data (texture or shape) in the previous image. For instance, in block-based coding schemes, this means that a certain number of blocks will be filled with the corresponding blocks in the previous image (texture or shape). The lost area corresponds to the whole area between the position where the error has been localized and the next synchronization point, if no RVLCs are used, or to a certain area around the error position, e.g. one or more blocks, if reversible decoding is also used.

· Lost data and more from previous image - The area to be concealed (texture or shape) is a backward extension of the lost area (in terms of the decoding direction), following the knowledge that errors are typically located somewhere before the place where they are effectively detected. This data (texture or shape) is made equal to the corresponding data in the previous image (frame or arbitrarily shaped 2D object). This technique tries to avoid image artifacts, resulting from the ‘correct’ decoding of corrupted (texture, motion or shape) data. The lost area becomes here the whole area starting before the position where the error has been localized and the next synchronization point, if no RVLCs are used, or to a certain area around the error position, e.g. one or more blocks, if reversible decoding is also used. The dimension of the area to be concealed before the position where the error has been located depends on the confidence that the error localization techniques used deserve. For example, if the decoder detects an error in a given block and it is quite confident that the error occurred somewhere in the previous two blocks, it is probably better to discard also the previous two blocks and try to conceal this area.

· Lost data from motion compensated previous image - The lost data (texture or shape) is made equal to the corresponding data in the previous motion compensated image (frame or arbitrarily shaped 2D object). The motion vectors used for motion compensation may be the current vectors, if they are available, or the vectors associated to the corresponding area in the previous image, if they exist. In fact, the syntax may be built in such a way that, for a certain area, even if texture or shape information is lost, the motion information is not. Care has to be taken when the previous motion vectors are used in low temporal resolution conditions. This technique is similar to the first one described above with the addition that the use of motion compensated data should possibly allow a better concealment, when motion exists.

· Lost data and more from motion compensated previous image - The area to be concealed (for texture or shape) is a backward extension of the lost area (in terms of the decoding direction), and it is made equal to the corresponding area in the previous motion compensated image (frame or arbitrarily shaped 2D object). The motion vectors used for motion compensation may be the current vectors, if they are available, or the vectors associated to the corresponding area in the previous image, if they exist. This technique is similar to the second one described above with the addition that the use of motion compensated data should possibly allow better concealment, when motion exists.

The stand-alone decoder error concealment techniques described above are to be used in alternative. They can all be applied to both texture and shape lost data.

5.3.2 Back-channeling concealment

Back-channeling concealment allows the decoder to request the encoder to perform some actions for error concealment purposes - texture, motion or shape - and requires for this a back-channel. This implies that some delay is usually involved in the concealment. Therefore this type of techniques may be less appropriate for real-time communications or, at least, some stand alone decoder concealment should be used to minimize the negative impact of errors until the encoder’s reaction arrives. In this section, back-channeling channel coding techniques such as ARQ schemes are not considered since these techniques foresee the complete correction of the errors and not the dissimulation of their effects.

There are several back-channeling techniques, both for texture and shape, notably:

· Intra-refresh request - When an error is detected, the decoder requests the encoder to code the corrupted areas, at the next image (frame or object) to code, using the intra coding mode. This prevents the error from propagating for too long. If the bit error rate is too high, this technique cannot work very efficiently, since most of the blocks will become intra-coded and, supposing that the bitrate is fixed, the quality has to drop quite significantly.

· Change prediction - Back-channel signaling indicates the encoder which areas were correctly received or lost. The encoder starts then to use for prediction, only the most recent correctly decoded areas (4(. Due to the delays involved, care should be taken that the decoder knows, at every instant, which areas are being used for prediction.

· Error propagation simulation - Backward channel signaling indicates the encoder which areas were correctly received or lost. Based on this information, the encoder simulates the propagation of errors within the image due to the predictions performed, and concludes about the areas corrupted in the next image to code. These areas, e.g. the corresponding blocks, are then coded using an intra coding mode (14(.

The back-channeling error concealment techniques described above are to be used simultaneously or in alternative.

5.4 Post-processing Techniques

Post-processing techniques are very commonly used tools for artifacts reduction on the decoded images. For the purpose of this paper, these tools (filters) can be classified in two classes depending on the type of artifact reduction that is performed:

· Filters for coding artifact reduction – These techniques try to remove the coding artifacts in the decoded (after concealment) images, such as the DCT blocking artifacts. Good examples of such filters are the deblocking and deringing filters, specified in Annex F of the MPEG-4 Visual CD [2].

· Filters for error artifact reduction – These techniques try to remove the artifacts resulting from undetected channel errors. These filters may be useful since the content-based error concealment techniques described above are usually applied when errors are detected, but unfortunately it also happens that errors are not detected at all by any of the detection techniques mentioned. The probability of an error not being detected mainly depends on the bitstream syntax and on the degree of completeness of the Huffman coder used. Anyway, either because some errors have not been detected or were detected but not adequately localized and concealed, it is possible that some artifacts still remain in the decoded images after all the concealment stages above described are applied.

In the context of this paper, only the post-processing techniques for error artifacts reduction will be studied, since the other type of post processing, although very important for the final subjective impact, is not related to channel errors (and it is in fact also used in error free environments). The post-processing filters should detect error artifacts, defined as unlikely decoded data in the context of the relevant application. However, since there is always a residual probability that the detected “unlikely decoded data” is good data and not an artifact, the use of these techniques is optional and they may be switched off at the receiver. After an artifact is detected, one of the error concealment techniques already described is used.

As examples, two possible texture error artifacts filters will be presented in the following:

· Pixel value post-processing – This technique assumes that some assumptions can be made about the values that texture can take, e.g. within a macroblock. For example, macroblocks with a significant number of light green or pink pixels can be considered artifacts in the context of a videotelephone conversation. Also macroblocks for which a high number of pixels are subject to clipping, this means the decoded values are higher than 255, are very likely sign of an error artifact.

· Continuity post-processing – This technique assumes that a good continuity exists at the boundaries of blocks in the context of 8x8 DCT coding schemes. A filter that detects high discontinuities along 8x8 block aligned with the DCT coding grid can very likely detect strong error artifacts (depending on the discontinuity thresholds set).

The post-processing stage to remove error artifacts may significantly improve the video subjective impact since very evident artifacts can be removed from the images. However this impact depends on the coding scheme used and on its resilience to errors, e.g. a very resilient coding scheme can avoid the strong artifacts that post-processing is supposed to remove. Other types of post-processing concealment besides those described here may also be performed, both for texture and shape. These techniques are not subject to standardization but may lead to significant quality differences between terminals using the same coding standard, notably for critical error conditions.

Similar post-processing techniques may be applied to shape information although the definition of shape artifacts is more difficult and may only make sense in the context of specific applications with clear limitations on the shape characteristics.
[image: image1.png] MPEGS
WORLD

[image: image2.png] MPEGS
WORLD

Figure 1 - Images before and after continuity post-processing
[image: image6.png]

Figures 1 and 2 show two examples of post-processing for error artifact removal. In the first example, the discontinuities at the border of the different macroblocks are processed to detected “out of context” macroblocks, according to a certain threshold. This technique may lead to wrong decisions if the video material contains discontinuities aligned with the DCT coding grid. In the second example, macroblocks with saturated pink are removed, which may be wrong in the context of applications with synthetic content. Since most error detection post-processing filters are content-dependent in the sense that they may lead to wrong decisions if the content does not follow the basic assumptions behind the error detection post-processing filter used, the choice of the filters to use must be carefully made, depending on the relevant application (and thus on the corresponding typical content).

6.
Video Error Resilience in MPEG-4

The MPEG-4 Visual CD (2(supports the coding of 2D arbitrarily shaped objects. These objects are independently coded, hence allowing a certain degree of user interaction: the user can access and manipulate each one of them independently. In terms of quality and error resilience, the MPEG-4 content-based architecture allows the selective coding of various objects, depending on their importance in the scene, thus maximizing the subjective impact for the resources available.

Since the MPEG-4 video encoder is prepared to code any type of 2D video objects, if a scene segmentation solution is not available or the independent coding of the objects is not useful for the application in question, it is always possible to code the scene in the more traditional way, which means as one rectangular object - frame-based coding. In this case, no shape information needs to be sent. However due to the need to code 2D arbitrarily shaped objects, the MPEG-4 video codec is the first one to include a shape coder. This was not the case for traditional frame-based coders, where only texture and motion information needs to be transmitted.

Taking into account that shape, texture and motion information has to be transmitted in the context of object-based MPEG-4 video streams, two major video data multiplexing modes can, in principle, be defined:

· Combined Mode – For each Video Object Plane (VOP) - snapshot in time of a video object in the scene - the shape, motion and texture data is multiplexed at the macroblock level.

· Separate Mode – The shape, motion and texture data is multiplexed at the VOP level, i.e. first all the shape data is sent, then all the motion data and finally all the texture data, for each VOP.

Although the separate mode looked particularly adequate to implement a selective protection of the various types of data since they are multiplexed at the VOP level, other issues such as bitrate overhead, delay, coding schemes, etc. strongly influenced the choice of the bitstream syntax. As will be seen in the following, MPEG-4 defined two object-based error resilient bitstream syntaxes, one basically corresponding to the combined mode and another corresponding to a hybrid of the combined and separate modes.

6.1 The Error Resilient Coding Modes

Due to the need of providing good performance in error prone environments, such as mobile networks, the MPEG-4 video standard includes some error resilience tools and thus some error resilient coding modes. This error resilience is provided at the source coding level and thus in addition to the error protection provided by the channel coding, introduced at the multiplex level.

The main idea behind error resilient source coding in MPEG-4 is to split the VOP information into independent resynchronization packets in order to avoid error propagation from one packet to the other. To allow a more evenly distributed protection, the packet size was chosen to be approximately constant in terms of the number of bits, instead of being constant in terms of the number of macroblocks included. This solution requires the encoder to continuously track the number of bits per packet, in order to start a new packet immediately after the end of the macroblock where the chosen threshold is exceeded. This guarantees that the information corresponding to a given macroblock will not be split between two packets. The packets are separated by a resynchronization marker followed by some fields with important information to make the packets totally independent from each other. These fields include the current macroblock address, the absolute quantization parameter and, optionally, the VOP temporal reference, the VOP coding type and the f_codes, which determine the motion vector search range.

Based on the resynchronization packet approach, two error resilient coding modes were specified by MPEG-4, depending on the way the information is organized within the packets:

· Combined Mode (without data partitioning) – This is the basic error resilient coding mode where data is organized in the same way as in the normal combined mode (not error resilient), with the exception that data is divided in resynchronization packets, according to the rules explained above.

· Combined Mode with Data Partitioning – The idea of the combined mode with data partitioning is to take the combined mode and increase its error resilience capability. This is done by re-ordering the syntactic elements of the combined mode according to the “separate mode” rules [13]. This way the texture information will be separated from the shape and motion data, as will be seen in the next section.

Reversible VLC tables are also defined and can be (optionally) used with any of the error resilient coding modes.

6.2 The Combined Mode with Data Partitioning Syntax

It was shown within MPEG [13] that the combined mode with data partitioning provides the best compromise between error resilience and compression efficiency. It is thus natural that this will be the error resilient coding mode chosen in the section 7 to analyze the MPEG-4 frame-based error resilience performance. In order to understand better the results to be provided, a short description of the error resilient data partitioning bitstream syntax is here presented. For more details, see the MPEG-4 Visual CD (2(.

The data partitioning syntax is only applicable to intra-coding (I-VOPs) and to predictive-coding (P-VOPs); for B-VOPs, the syntax is the same with and without data partitioning. The combined mode with data partitioning syntax is a sequence of resynchronization packets, where the texture coefficients, shape data, motion data, and the header information are structured as shown below (P-VOPs):

Resync. Marker
MBA
QP
HEC
Optional Fields
Shape & Motion Data
Motion Marker
Texture Data
Resync. Marker

where MBA is the Macroblock Address, QP is the Quantization Parameter and HEC the Header Extension Code. If HEC is set to 0, then the optional fields, VOP temporal reference, VOP coding type and f_codes, are not sent. For I-VOPs, the syntax is very similar with the Shape & Motion Data replaced by the Shape Data and the Motion Marker replaced by the DC Marker.

To have a better idea of the further re-arrangement of the syntax for the Shape & Motion Data, the syntax for P and I-VOPs, respectively, is presented in the following:

BAB type MB(k)
MVDs MB(k)
CR MB(k)
ST MB(k)
BAC MB(k)
not_coded MB(k)
MCBPC MB(k)
MV1-4 MB(k)
BAB type MB(k+1)
MVDs MB(k+1)
CR MB(k+1)
ST MB(k+1)
BAC MB(k+1)
not_coded MB(k+1)
…

BAB type MB(k)
CR MB(k)
ST MB(k)
BAC MB(k)
MCBPC MB(k)
DQUANT MB(k)
Intra DC Coef MB(k)
BAB type MB(k+1)
CR MB(k+1)
ST MB(k+1)
BAC MB(k+1)
MCBPC MB(k+1)
…

The semantics associated to the syntax above can be found in the MPEG-4 Visual CD (2(.

Regarding the Texture Data, the syntax for P-VOPs and I-VOPs is further re-arranged as follows, respectively:

AC_pred_flag MB(k)
CBPY MB(k)
DQUANT

MB(k)
Intra DC Coef MB(k)
AC_pred_flag MB(k+1)
CBPY MB(k*1)
DQUANT

MB(k+1)
Intra DC Coef MB(k+1)
......
DCT

MB(k)
DCT

MB(k+1)
.....

AC_pred_flag MB(k)
CBPY MB(k)
AC_pred_flag MB(k+1)
CBPY MB(k*1)
......
DCT

MB(k)
DCT

MB(k+1)
.....

Again, the semantics associated to the syntax above can be found in the MPEG-4 Visual CD (2(.
7.
Conditions and Results

This section studies the performance of an MPEG-4 compliant frame-based error resilient solution, using the combined mode with data partitioning, and integrating some of the error concealment techniques previously described. The fact that the MPEG-4 shape-based error resilient syntax was defined much later prevents that results are already presented in this Special Issue.

The error resilience case studied in this paper corresponds to the MPEG-4 Natural Video Simple Profile, addressing mobile communications, which does not include shape coding (only rectangular objects are supported). The results to be presented here were obtained with the MPEG-4 error resilient video codec developed by one of the authors of this paper, based on the MoMuSys reference software (and later included in this reference software).

Within MPEG, three residual error condition classes have been defined for the purpose of studying error resilience performance in the video layer [15]:

· Uniformly distributed errors: this case corresponds to a wireless system where extensive interleaving is performed by the network and the errors are simply being passed on to the video layer by the multiplex layer;

· Burst errors: this case models the errors caused by a fading channel where the multiplex layer is able to correctly decode the packet headers and the errors in the data itself are simply being passed on to the video layer;

· Packet loss errors: this last case is representative of the situation where the multiplex is unable to decode a packet header and therefore the whole data in the packet is lost. This case can also be representative of packet losses caused by timeouts that might occur in an internet-like application.

Although each one of these error classes includes several error conditions, only one representative condition per error class will be used in this paper [4]. The error conditions to be used in this paper are:

· Error Condition 1 (EC1): Uniformly distributed errors with an average bit error rate (BER) of 10-3.

· Error Condition 2 (EC2): Burst errors with an average BER of 10-2 and a burst length of 10 ms. The bit error rate in the burst is 0.5.

· Error Condition 3 (EC3): Packet losses with a packet loss rate of 10-2.

The various error patterns were generated with the software kindly provided by NTT DoCoMo (Japan) (16(. The results were produced for runs of 50 frames (one intra coded frame followed by 49 inter coded (P) frames) of the sequences “Container ship” (typical surveillance sequence) and “Foreman” (typical mobile videotelephony sequence), with a temporal resolution of 10 Hz and QCIF spatial resolution.

The overall test conditions are similar to those specified in the MPEG-4 Error Resilience Core Experiments (CE) document [4]. The constant quantization steps were chosen such that the bitrate is approximately 24 kbps for “Container Ship” and 48 kbps for “Foreman”. The resynchronization marker spacings used were 480 and 736 bits for “Container Ship” and “Foreman”, respectively.

For the conditions defined above, error localization, concealment and post-processing techniques were tested. For error detection techniques, simple syntactic and semantic checks were used, such as “illegal” codewords, unexpected and missing markers, higher than 64 DCT coefficient scan order, and macroblock counting inconsistencies. Channel decoding was not used since the models used for the error patterns correspond to residual errors in the video layer, i.e. after channel decoding. Although the limitations of PSNR measures are acknowledged, the PNSR YUV measure defined in (4(, was still used as quality measure due to its easy computation. All the results shown below are averages of 10 runs per error condition.

7.1 Results for Error Localization

[image: image7.png]an

[image: image8.png]

The error localization technique here tested falls under the category of error resilient entropy coding, more precisely Reversible Variable Length Coding (RVLC). When reversible decoding is used, the bitstream is decoded in a forward direction first. If no errors are detected, the bitstream is assumed to be valid and the decoding process is finished for that resynchronization packet. If an error is detected however, two-way decoding is applied. The advantages brought by these codes by allowing forward and backward decoding are studied. For this purpose, a set of tests using forward decoding and reversible decoding (forward and backward) is made using the “Container Ship” and “Foreman” sequences for the error conditions EC1, EC2 and EC3.

 a) Container Ship

 b) Foreman
Figure 3 - Performance for Reversible VLCs for Error Condition 1

The results in Figures 3 to 5 show that for EC1, the reversible decoding is clearly better than forward decoding alone (using concealment 2 from next section) for both sequences. However, for EC2 and EC3, the reversible decoding scheme does not always outperform the forward decoding scheme. This effect can be clearly seen for the “Container Ship” sequence, where reversible decoding is slightly poorer than forward decoding only. However, for the “Foreman” sequence, which has much more motion, the reversible decoding is superior to the forward decoding only. This effect has been previously reported within MPEG [17] and can be explained by taking a closer look at the possible error cases and how the decoder reacts in the presence of each one of them.

[image: image9.png]

[image: image10.png]

 a) Container Ship

 b) Foreman
[image: image11.png]

Figure 4 - Performance for Reversible VLCs for Error Condition 2

[image: image12.png]

a) Container Ship

 b) Foreman
Figure 5 - Performance for Reversible VLCs for Error Condition 3

When using reversible decoding, errors can be detected and macroblocks discarded according to the four main strategies (mutually exclusive) described below, which are similar to those described in the MPEG-4 Visual CD (2]. To understand the coming figures, the following information is needed:

L
- Total number of bits for the DCT coefficients part in a resynchronization packet

N
- Total number of macroblocks in a resynchronization packet

L1
- Number of bits that can be decoded in forward decoding

L2
- Number of bits that can be decoded in backward decoding

N1
- Number of macroblocks that can be completely decoded in forward decoding

N2
- Number of macroblocks that can be completely decoded in backward decoding

f_mb(S) - Number of completely decoded macroblocks when S bits can be decoded in the forward direction

b_mb(S) - Number of completely decoded macroblocks when S bits can be decoded in the backward direction

T
- Threshold (90 is used now)

· Strategy 1 : L1+L2 < L and N1+N2 < N (Figure 6) – here f_mb(L1-T) macroblocks from the beginning of the resynchronization packet and b_mb(L2-T) macroblocks from the end are used; the remaining macroblocks (in dark) are discarded.

[image: image3.wmf]´

´

L1

L2

L

Error detected positions

in a

bitstream

N1

N2

N

Number of decoded

MBs corresponding to

L1 and L2

MBs to be discarded

f_mb(L1-T)

b_mb(L2-T)

T

T

Figure 6 – Strategy 1 for decoding RVLCs (2(
· Strategy 2 : L1+L2 < L and N1+N2 >= N (Figure 7) – here N-N2-1 macroblocks from the beginning of the resynchronization packet and N-N1-1 macroblocks from the end are used; the remaining macroblocks (in dark) are discarded.

Figure 7 – Strategy 2 for decoding RVLCs (2(
· Strategy 3 : L1+L2 >= L and N1+N2 < N (Figure 8) – here N-b_mb(L2)-1 macroblocks from the beginning of the resynchronization packet and N-f_mb(L1)-1 macroblocks from the end are used; the remaining macroblocks (in dark) are discarded.

[image: image4.wmf]´

´

L1

L2

L

Error detected positions

in a

bitstream

N1

N2

N

Number of decoded

MBs corresponding to

L1 and L2

MBs to be discarded

N - b_mb(L2) - 1

N - f_mb(L1) - 1

Figure 8 – Strategy 3 for decoding RVLCs

· Strategy 4 : L1+L2 >= L and N1+N2 >= N (Figure 9) – here min{N-b_mb(L2)-1, N-N2-1} macroblocks from the beginning of the resynchronization packet and min{N-f_mb(L1)-1, N-N1-1} macroblocks from the end are used; the remaining macroblocks (in dark) are discarded.

[image: image5.wmf]´

´

L1

L2

L

Error detected positions

in a

bitstream

N1

N2

N

Number of decoded

MBs corresponding to

L1 and L2

MBs to be discarded

Min{N - b_mb(L2) -1, N-N2-1}

Min{N-f_mb(L1)-1, N-N1-1}

Figure 9 – Strategy 4 for decoding RVLCs

In the above strategies, all the intra coded macroblocks are discarded even though they could have been decoded. Although these intra coded macroblocks are thought to be correct, the result of displaying them if they contain an error can substantially degrade the quality of the video. Therefore, instead of taking any chances it is better to conceal these intra coded macroblocks.

Since errors are generally detected some bits after they effectively occur, this means that up to the error detection some data has been erroneously decoded. While in the cases 3 and 4 above, (at least part of) this erroneously decoded data is discarded, in cases 1 and 2 the same might not happen if the threshold (T) is not correctly chosen since then some erroneously decoded macroblocks are taken as correct ones.

Taking into account that the cases 3 and 4 mostly happen for EC1 (uniform errors) and cases 1 and 2 mostly happen for EC2 and EC3 (burst errors and packet losses), the results in Figures 4-5 for EC2 and EC3 (“Container Ship”) when using reversible decoding are thus explained by the introduction of more erroneously decoded data. The results show in fact that it is usually worse to have erroneously decoded data than no data at all (and using past data for concealment). Although the use of reversible decoding did not show advantages for EC2 and EC3 in the case of the “Container Ship” sequence, advantages were always shown for uniformly distributed errors (EC1) and for EC2 and EC3 for the “Foreman” sequence (see example in Figure 10). The results obtained depend on the T value used; higher values of T would imply discarding more correct data but also a lower probability of accepting as correct data, corrupted data. In this context, it is clear that the error localization techniques to be use at the receiver need to be configured depending on the expected statistics of the channel errors (usually known).

[image: image13.emf]24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

[image: image14.emf]24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

[image: image15.emf]29

30

31

32

33

34

35

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

Figure 10 - “Foreman” – frame 49: a) error free b) forward decoding c) reversible decoding

7.2 Results for Error Concealment

The presence of errors in the received bitstream leads to image areas for which no decoded data exists, although some syntactic elements corresponding to these areas may still be available due to the independence introduced in the error resilience syntax, e.g. motion vectors but not DCT coefficients. Since the error concealment techniques try to conceal the negative effects of data lost, and the performance of these techniques is to be studied in this section, only forward decoding will be used here, since this is the situation that maximizes the amount of data lost. Since a frame-based error resilient coding syntax is being studied, only texture error concealment could be tested (not shape). As far as texture error concealment is concerned, three techniques were analyzed:

· Concealment 1 - Lost macroblocks made equal to the corresponding ones in the previous frame – This is a very popular technique and has been widely used. All the lost macroblocks are replaced with the macroblocks in the same position in the previous frame. For sequences with a high degree of movement this technique tends to perform poorly.

· Concealment 2 - Motion compensation using current vectors only – If, for a certain resynchronization packet, the texture data is lost but the motion vectors could be decoded, they are used to motion compensate the texture from the previous image (this is possible for the MPEG-4 combined mode with data partitioning syntax). If the header and motion information is also lost, then the corresponding macroblock in the previous frame is copied.

· Concealment 3 - Motion compensation using current or previous motion vectors - If, for a certain resynchronization packet, the texture data is lost but the motion vectors could be decoded, they are used to motion compensate the texture from the previous image (this is possible for the MPEG-4 combined mode with data partitioning syntax). If the header and motion information is also lost, then the motion vectors of the corresponding previous macroblocks are used.

[image: image16.emf]22

24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

[image: image17.emf]31

32

33

34

35

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

a) Container Ship

 b) Foreman

Figure 11 - Different types of concealment for Error Condition 1

[image: image18.emf]22

24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Concealment 1

Concealment 2

Concealment 3

[image: image19.emf]24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

a) Container Ship

 b) Foreman

Figure 12 - Different types of concealment for Error Condition 2

[image: image20.emf]18

20

22

24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

[image: image21.emf]28

29

30

31

32

33

34

35

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

a) Container Ship

 b) Foreman
Figure 13 - Different types of concealment for Error Condition 3

Figures 11 to 13 show the results obtained with the three error concealment techniques described for the error conditions chosen. First of all, the results indicate that Concealment 2 is always better than Concealment 1. This is easily understood, since Concealment 2 takes advantage of the correctly decoded motion data for a resynchronization packet where errors were detected in the texture data and Concealment 1 does not, just discarding the whole information in the packet. This effect is typically more evident for sequences with a lot of motion, such as “Foreman”. Concealment 3 shows better performance than the other concealment techniques for “Container Ship” and worse performance for “Foreman”. The reason for this behavior has to do with the use of the motion vectors from the previous frame, if the motion vectors for the current frame could not be decoded; naturally this approach works well if the motion is quite uniform in time. This is the case for “Container Ship”, the ship keeps moving in the same direction at the same speed, while “Foreman” shows a lot of almost random small movements at varying speed. Thus the error concealment techniques to be use at the receiver need to be configured depending on the expected characteristics of the video material, very much related to the relevant application.

In Figure 14, an example of a situation where Concealment 3 actually improves the performance of the decoder is shown. In this example, the values of the PSNR are 24.64, 26.60, and 27.76 for Concealment 1, Concealment 2, and Concealment 3, respectively. In Figure 15, an example is given where Concealment 3 is clearly not improving the image quality regarding the other concealment techniques. In this case, the values of the PSNR are 24.51, 25.84, and 24.84 for Concealment 1, Concealment 2, and Concealment 3, respectively.

[image: image22.emf]24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

[image: image23.emf]31

32

33

34

35

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

a) b)

[image: image24.png]

[image: image25.emf]22

24

26

28

30

32

34

36

0 10 20 30 40

Frame Number

PSNR YUV (dB)

Error Free

Forward Decoding

Reversible Decoding

c)

d)

Figure 14 – “Container Ship” (frame 36) with EC1: a) error free; b) concealment 1; c) concealment 2; d) concealment 3

[image: image26.png]

[image: image27.png]

 a)

b)

[image: image28.png]

[image: image29.png]

 c)

d)

Figure 15 – “Foreman” (frame 49) with EC31: a) error free; b) concealment 1; c) concealment 2; d) concealment 3

7.3 Results for Post-Processing

Since erroneously decoded data may introduce very visible artifacts, it may be important to do some image post-processing, to remove, at least, the most annoying ones. The post-processing technique used here is a simple tool that checks the absolute values of the pixels before they are clipped to the interval [0, 255]. If the number of pixels out of the interval limits in a given macroblock exceeds a certain threshold, then the macroblock is considered to be erroneous and some concealment is applied to it. For the moment, Concealment 1 is being used but other concealment techniques can be used (see previous section).

Since this type of techniques is supposed to be used locally when artifacts appear in the decoded frames and since artifacts, such as “chessboards” or others, are not very frequent, the improvements cannot be shown in terms of PSNR plots and therefore some examples of decoded frames will be shown instead. Figure 16 shows two examples of chessboard removal. In principle, it may also happen that some correct macroblocks are replaced, resulting in a decrease of PSNR, but this effect is much less annoying than having “chessboards” in the images.

[image: image30.png]

[image: image31.png]

[image: image32.png]

 a)

 b)

c)

[image: image33.png]

[image: image34.png]

[image: image35.png]

a)

 b)

 c)
Figure 16 – Removal of the “chessboard” effect – a) error free; b) without post-processing; c) with pixel value post-processing

The results presented in the last three sections – error localization, error concealment, and error post-processing - confirm that the right localization of the errors is essential to avoid taking as good, erroneously decoded data since this has a very negative impact in the final subjective quality. Besides error concealment, post-processing techniques may have an important role in the adequate concealment of erroneously decoded data, depending on the type of “undetectable” artifacts introduced by the video coding schemes. Since all the error processing techniques are optional, it is up to the user to configure the receiver in the most convenient way, taking into account the channel characteristics, the type of video content, the typical coding artifacts, etc.

8.
Final Remarks

The emerging MPEG-4 standard will be the first content-based audiovisual coding standard and thus it is essential that content-based error resilient techniques are developed and tested. This paper studied first the various techniques involved in designing an error resilient video coding system, notably source and channel coding, error localization and concealment and finally post-processing. The techniques presented are to be used in a content-based environment although they have here been tested with frame-based video. This is still a very relevant case in terms of MPEG-4, corresponding to the MPEG-4 Natural Video Simple Profile, addressing mobile communications, which does not include shape coding (only rectangular objects are supported). Table 1 summarizes all the techniques mentioned and thus associated to the minimization of the negative impact of errors in the context of content-based video coding schemes.

The performance evaluation made allowed to confirm that a good error resilient decoder needs to simultaneously rely on adequate error localization, concealment and post-processing techniques, configured depending on the channel characteristics, on the type of application (and thus on the type of content), and on the type of artifacts typical of the coding scheme used. Since all these techniques are non-normative, they represent a very relevant area of competition for the industry involved.

The results showed that MPEG-4 can provide very acceptable quality in environments with very severe error characteristics, such as mobile environments and therefore, MPEG-4 provides an adequate solution for video over wireless channels. Special relevance goes for the added value of Reversible VLC, and the possibility to correctly decode motion vectors without decoding texture data, provided by the combined mode with data partitioning.

Since error resilient shape coding is expected to be one of the MPEG-4 ex-libris, and this is quite a new research topic, the work described in this paper will continue with the design of an error resilient MPEG-4 decoder including 2D arbitrarily shaped video objects. The shape error concealment techniques already proposed in this paper will have also to be evaluated and possibly new ones will be developed.

SOURCE CODING
CHANNEL CODING
ERROR CONCEALMENT

Reducing the exploitation of video redundancy
Automatic Repeat Request
Forward Error Correction
Error Detection Techniques
Error Localization Techniques
Error Concealment Techniques
Post-processing Techniques

Increasing the amount of synchronization data
ARQ-type I
Block codes
Channel decoding
Exploitation of error resilient entropy coding
Stand alone decoder error concealment
Back-channeling concealment
Continuity texture post-processing

Using error resilient entropy coding
ARQ-type II
Convolutional codes
Syntactic inconsistency
Improved error localization by texture post-processing
Lost data from previous image
Intra-refresh request
Pixel value texture post-processing

Using a more resilient prediction model

Semantic inconsistency
Improved error localization by shape post-processing
Lost data and more from previous image
Change prediction
Shape post-processing

Lost data from motion compensated previous image
Error propagation simulation in the encoder.

Lost data and more from motion compensated previous image

Table 1 - Summary of relevant techniques for content-based error resilient video coding

Acknowledgments

The authors acknowledge the support of the European Commission under the ACTS project MoMuSys, and of PRAXIS XXI under the project ‘Processamento Digital de Áudio e Vídeo’. L. Ducla Soares acknowledges the support of Junta Nacional de Investigação Científica e Tecnológica through his Ph.D. scholarship. Finally, the authors acknowledge the members of the MPEG AHG on Error Resilience for the friendly and fruitful environment created during the time of the development of the MPEG-4 video standard.

References

[1] R.Koenen, F.Pereira, L.Chiariglione, “MPEG-4: Context and Objectives”, Image Communication Journal: MPEG-4 Special Issue, vol. 9, nº 4, May 1997

[2] MPEG Visual & SNHC, “Text for CD 14496-2 Visual”, Doc. ISO/IEC JTC1/SC29/WG11 N1902, Fribourg MPEG meeting, October 1997, http://drogo.cselt.it./mpeg/public

[3] A. Basso, I. Dalgiç, F. A. Tobagi and C. J. van der B. Lambrecht, “Study of MPEG-2 Coding Performance Based on a Perceptual Quality Metric”, Proc. International Picture Coding Symposium, Melbourne, Australia, March 1996

[4] MPEG AHG on Error Resilience, “Description of Error Resilient Core Experiments”, ISO/IEC JTC1/SC29/WG11 N1646, Bristol MPEG meeting, April 1997

[5] F. Pereira, T. Alpert, “MPEG-4 Video Subjective Test Procedures and Results”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, nº 1, February 1997

[6] Test and Video Subgroups, “Work Plan for Formal Verification Tests on Video Error Resilience”, ISO/IEC JTC1/SC29/WG11 N2061, San Jose MPEG meeting, February 1998

[7] T. Alpert and L. Contin, “DSCQE (Double Stimulus using a Continuous Quality Evaluation) experiment for the evaluation of the MPEG-4 VM on error robustness functionality”, ISO/IEC JTC1/SC29/WG11 M1604, Seville MPEG meeting, February 1997

[8] P.Haskell and D.Messerschmitt, “Resynchronization of Motion Compensated Video Affected by ATM Cell Loss”, in Proc. Int. Conf. Acoustics, Speech, Signal Processing, March 1992, pp 545-548

[9] ITU-T Recommendation H.261, “Video Codec for Audiovisual Services at px64 kbps”, 1993

[10] ITU-T SG 15, Draft Recommendation H.263 “Video Coding for Low Bitrate Communication”, June 1996

[11] S. M. Redl, M. K. Weber, M. W. Oliphant, “An Introduction to GSM”, Artech House Publishers, 1995

[12] ITU-T Recommendation H.223, Annex A: “Multiplexing Protocol for Low Bitrate Mobile Multimedia Communication”, May 1996

[13] R. Talluri, I. Moccagatta, Y. Nag, “E8 – Core Experiment on Error Concealment by Data Partitioning”, ISO/IEC JTC1/SC29/WG11 M1622, Seville MPEG meeting, February 1997

[14] M.Wada, “Selective Recovery of Video Packet Loss Using Error Concealment”, IEEE Journal on Selected Areas in Communications, vol. 7, nº. 5, June 1989

[15] Video Group, “Report on Error Conditions for Error Resilience Core Experiments”, ISO/IEC JTC1/SC29/WG11 N1223, Florence MPEG meeting, March 1996

[16] NTT DoCoMo Error Generating Software (provided to the Error Resilience Ad Hoc Group Reflector on October 31st, 1996)

[17] Toshiaki Watanabe, Yoshihiro Kikuchi, “Comparison of Error Resilient VLC (Core Experiment E3a)”, ISO/IEC JTC1/SC29/WG11 M1412, Maceió MPEG meeting, November 1996
�		�

Figure 2 – Images before and after pixel value post-processing

� In MPEG-4, audiovisual (AV) object data is conveyed in one or more Elementary Streams (more than one, if scalability is used). The streams are characterized by the Quality of Service (QoS) they request for transmission, as well as other parameters, including a stream type information and the precision for encoding timing information. The FlexMux multiplex sub-layer allows to group together Elementary Streams with similar QoS requirements.

� As an example, suppose that a very simple code, such as a parity-check code, is used. After each k information bits, the encoder adds a set of r parity-check bits, which is derived from the k information bits. The set of r bits is chosen such that only error detection can be performed at the decoder. If an error is detected, the encoder is signaled and sends a larger set of parity-check bits that should now allow the decoder to correct the errors.

0

_949734773.doc

T

T

b_mb(L2-T)

f_mb(L1-T)

MBs to be discarded

L1 and L2

MBs corresponding to

Number of decoded

N

N2

N1

bitstream

in a

Error detected positions

L

L2

L1





_949931316.doc

N - f_mb(L1) - 1

N - b_mb(L2) - 1

MBs to be discarded

L1 and L2

MBs corresponding to

Number of decoded

N

N2

N1

bitstream

in a

Error detected positions

L

L2

L1





_949758993.doc

Min{N-f_mb(L1)-1, N-N1-1}

Min{N - b_mb(L2) -1, N-N2-1}

MBs to be discarded

L1 and L2

MBs corresponding to

Number of decoded

N

N2

N1

bitstream

in a

Error detected positions

L

L2

L1





_939553084.doc
���

N - N1-1

N - N2-1

MBs to be discarded

L1 and L2

MBs corresponding to

Number of decoded

N

N2

N1

bitstream

in a

Error detected positions

L

L2

L1

´

´

